The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Reperfusion


Psychiatry related information on Reperfusion


High impact information on Reperfusion


Chemical compound and disease context of Reperfusion


Biological context of Reperfusion


Anatomical context of Reperfusion


Associations of Reperfusion with chemical compounds

  • We found that mice homozygous deficient in C3 or C4 were equally protected against reperfusion injury based on a significant reduction in leakage of radiolabeled albumin out of the vasculature [27].
  • Specifically, promethazine protected primary neuronal cultures subjected to oxygen-glucose deprivation and reduced infarct size and neurological impairment in mice subjected to middle cerebral artery occlusion/reperfusion [28].
  • Creatine kinase, an indicator of cellular injury, was released at a high level (67.7 +/- 23.0 U/ml) upon reperfusion from nontransgenic hearts, but not transgenic hearts (1.6 +/- 0.8 U/ml) [29].
  • Unlike the effect on tissue MDA and conjugated dienes, reperfusion did not significantly stimulate release of MDA in the cardiac effluent [30].
  • During reperfusion, the sinusoidal efflux of total glutathione (16.4 +/- 2.1 nmol GSH eq/min X g) and GSSG (0.13 +/- 0.05 nmol GSH eq/min X g) did not change except for an initial 10-30-s increase during reperfusion washout [31].

Gene context of Reperfusion


Analytical, diagnostic and therapeutic context of Reperfusion


  1. Free radicals in the physiological control of cell function. Dröge, W. Physiol. Rev. (2002) [Pubmed]
  2. A comparison between heparin and low-dose aspirin as adjunctive therapy with tissue plasminogen activator for acute myocardial infarction. Heparin-Aspirin Reperfusion Trial (HART) Investigators. Hsia, J., Hamilton, W.P., Kleiman, N., Roberts, R., Chaitman, B.R., Ross, A.M. N. Engl. J. Med. (1990) [Pubmed]
  3. Reperfusion pulmonary edema. Klausner, J.M., Paterson, I.S., Mannick, J.A., Valeri, R., Shepro, D., Hechtman, H.B. JAMA (1989) [Pubmed]
  4. Blockade of the natriuretic peptide receptor guanylyl cyclase-A inhibits NF-kappaB activation and alleviates myocardial ischemia/reperfusion injury. Izumi, T., Saito, Y., Kishimoto, I., Harada, M., Kuwahara, K., Hamanaka, I., Takahashi, N., Kawakami, R., Li, Y., Takemura, G., Fujiwara, H., Garbers, D.L., Mochizuki, S., Nakao, K. J. Clin. Invest. (2001) [Pubmed]
  5. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. Mackins, C.J., Kano, S., Seyedi, N., Schäfer, U., Reid, A.C., Machida, T., Silver, R.B., Levi, R. J. Clin. Invest. (2006) [Pubmed]
  6. Cooperative Cardiovascular Project (CCP) quality improvement in Maine, New Hampshire, and Vermont. Ramunno, L.D., Dodds, T.A., Traven, N.D. Evaluation & the health professions. (1998) [Pubmed]
  7. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Dumont, E.A., Reutelingsperger, C.P., Smits, J.F., Daemen, M.J., Doevendans, P.A., Wellens, H.J., Hofstra, L. Nat. Med. (2001) [Pubmed]
  8. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Weitz-Schmidt, G., Welzenbach, K., Brinkmann, V., Kamata, T., Kallen, J., Bruns, C., Cottens, S., Takada, Y., Hommel, U. Nat. Med. (2001) [Pubmed]
  9. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Yan, S.F., Fujita, T., Lu, J., Okada, K., Shan Zou, Y., Mackman, N., Pinsky, D.J., Stern, D.M. Nat. Med. (2000) [Pubmed]
  10. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Simoncini, T., Hafezi-Moghadam, A., Brazil, D.P., Ley, K., Chin, W.W., Liao, J.K. Nature (2000) [Pubmed]
  11. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Wang, Y.F., Tsirka, S.E., Strickland, S., Stieg, P.E., Soriano, S.G., Lipton, S.A. Nat. Med. (1998) [Pubmed]
  12. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Cuzzocrea, S., Riley, D.P., Caputi, A.P., Salvemini, D. Pharmacol. Rev. (2001) [Pubmed]
  13. Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Moskowitz, M.A., Kiwak, K.J., Hekimian, K., Levine, L. Science (1984) [Pubmed]
  14. Pharmacology of selectin inhibitors in ischemia/reperfusion states. Lefer, D.J. Annu. Rev. Pharmacol. Toxicol. (2000) [Pubmed]
  15. Mortality at 1 year with combination platelet glycoprotein IIb/IIIa inhibition and reduced-dose fibrinolytic therapy vs conventional fibrinolytic therapy for acute myocardial infarction: GUSTO V randomized trial. Lincoff, A.M., Califf, R.M., Van de Werf, F., Willerson, J.T., White, H.D., Armstrong, P.W., Guetta, V., Gibler, W.B., Hochman, J.S., Bode, C., Vahanian, A., Steg, P.G., Ardissino, D., Savonitto, S., Bar, F., Sadowski, Z., Betriu, A., Booth, J.E., Wolski, K., Waller, M., Topol, E.J. JAMA (2002) [Pubmed]
  16. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. Patt, A., Harken, A.H., Burton, L.K., Rodell, T.C., Piermattei, D., Schorr, W.J., Parker, N.B., Berger, E.M., Horesh, I.R., Terada, L.S. J. Clin. Invest. (1988) [Pubmed]
  17. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. Daemen, M.A., van 't Veer, C., Denecker, G., Heemskerk, V.H., Wolfs, T.G., Clauss, M., Vandenabeele, P., Buurman, W.A. J. Clin. Invest. (1999) [Pubmed]
  18. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. Amersi, F., Buelow, R., Kato, H., Ke, B., Coito, A.J., Shen, X.D., Zhao, D., Zaky, J., Melinek, J., Lassman, C.R., Kolls, J.K., Alam, J., Ritter, T., Volk, H.D., Farmer, D.G., Ghobrial, R.M., Busuttil, R.W., Kupiec-Weglinski, J.W. J. Clin. Invest. (1999) [Pubmed]
  19. Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts. Brown, J.M., Terada, L.S., Grosso, M.A., Whitmann, G.J., Velasco, S.E., Patt, A., Harken, A.H., Repine, J.E. J. Clin. Invest. (1988) [Pubmed]
  20. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. Thurman, J.M., Ljubanović, D., Royer, P.A., Kraus, D.M., Molina, H., Barry, N.P., Proctor, G., Levi, M., Holers, V.M. J. Clin. Invest. (2006) [Pubmed]
  21. Tissue plasminogen activator (tPA) inhibits plasmin degradation of fibrin. A mechanism that slows tPA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen. Wu, J.H., Diamond, S.L. J. Clin. Invest. (1995) [Pubmed]
  22. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. Ma, X.L., Tsao, P.S., Lefer, A.M. J. Clin. Invest. (1991) [Pubmed]
  23. Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. Sharma, A.D., Saffitz, J.E., Lee, B.I., Sobel, B.E., Corr, P.B. J. Clin. Invest. (1983) [Pubmed]
  24. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. Kuroki, M., Voest, E.E., Amano, S., Beerepoot, L.V., Takashima, S., Tolentino, M., Kim, R.Y., Rohan, R.M., Colby, K.A., Yeo, K.T., Adamis, A.P. J. Clin. Invest. (1996) [Pubmed]
  25. Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. Koga, S., Ogawa, S., Kuwabara, K., Brett, J., Leavy, J.A., Ryan, J., Koga, Y., Plocinski, J., Benjamin, W., Burns, D.K. J. Clin. Invest. (1992) [Pubmed]
  26. Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine. Nilsson, U.A., Schoenberg, M.H., Aneman, A., Poch, B., Magadum, S., Beger, H.G., Lundgren, O. Gastroenterology (1994) [Pubmed]
  27. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. Weiser, M.R., Williams, J.P., Moore, F.D., Kobzik, L., Ma, M., Hechtman, H.B., Carroll, M.C. J. Exp. Med. (1996) [Pubmed]
  28. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. Stavrovskaya, I.G., Narayanan, M.V., Zhang, W., Krasnikov, B.F., Heemskerk, J., Young, S.S., Blass, J.P., Brown, A.M., Beal, M.F., Friedlander, R.M., Kristal, B.S. J. Exp. Med. (2004) [Pubmed]
  29. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. Plumier, J.C., Ross, B.M., Currie, R.W., Angelidis, C.E., Kazlaris, H., Kollias, G., Pagoulatos, G.N. J. Clin. Invest. (1995) [Pubmed]
  30. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. Ambrosio, G., Flaherty, J.T., Duilio, C., Tritto, I., Santoro, G., Elia, P.P., Condorelli, M., Chiariello, M. J. Clin. Invest. (1991) [Pubmed]
  31. Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver. Jaeschke, H., Smith, C.V., Mitchell, J.R. J. Clin. Invest. (1988) [Pubmed]
  32. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M.P., Lotze, M.T., Yang, H., Li, J., Tracey, K.J., Geller, D.A., Billiar, T.R. J. Exp. Med. (2005) [Pubmed]
  33. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. Chiang, N., Gronert, K., Clish, C.B., O'Brien, J.A., Freeman, M.W., Serhan, C.N. J. Clin. Invest. (1999) [Pubmed]
  34. Regulation of CCAAT/Enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion. Chandrasekar, B., Mitchell, D.H., Colston, J.T., Freeman, G.L. Circulation (1999) [Pubmed]
  35. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Torre-Amione, G., Kapadia, S., Lee, J., Bies, R.D., Lebovitz, R., Mann, D.L. Circulation (1995) [Pubmed]
  36. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappaB activation. Zwacka, R.M., Zhou, W., Zhang, Y., Darby, C.J., Dudus, L., Halldorson, J., Oberley, L., Engelhardt, J.F. Nat. Med. (1998) [Pubmed]
  37. Intracellular calcium and ventricular function. Effects of nisoldipine on global ischemia in the isovolumic, coronary-perfused heart. Amende, I., Bentivegna, L.A., Zeind, A.J., Wenzlaff, P., Grossman, W., Morgan, J.P. J. Clin. Invest. (1992) [Pubmed]
  38. Myocardial ischemia induces differential regulation of KATP channel gene expression in rat hearts. Akao, M., Otani, H., Horie, M., Takano, M., Kuniyasu, A., Nakayama, H., Kouchi, I., Murakami, T., Sasayama, S. J. Clin. Invest. (1997) [Pubmed]
  39. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding. Beller, G.A., Conroy, J., Smith, T.W. J. Clin. Invest. (1976) [Pubmed]
WikiGenes - Universities