The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime.

Recently, natural variants of TEM-1 beta-lactamase with amino acid substitutions at residues 237-240 have been identified that have increased hydrolytic activity for extended-spectrum antibiotics such as ceftazidime. To identify the sequence requirements in this region for a given antibiotic, a random library was constructed that contained all possible amino acid combinations for the 3-residue region 237-240 ( ABL numbering system) of TEM-1 beta-lactamase. An antibiotic disc diffusion method was used to select mutants with wild-type level activity or greater for the extended-spectrum cephalosporin ceftazidime and the monobactam aztreonam. Mutants that were selected for optimal ceftazidime hydrolysis contained a conserved Ala at position 237, a Ser for Gly substitution at position 238, and a Lys for Glu at position 240. Mutants selected for aztreonam hydrolysis exhibited a Gly for Ala substitution at position 237, a Ser for Gly substitution at position 238, and a Lys/Arg for Glu at position 240. The role of the A237G substitution in differentiating between ceftazidime and aztreonam was further investigated by kinetic analysis of the A237G, E240K, G238S:E240K, and A237G:G238S:E240K enzymes. The A237G single mutant and the G238S:E240K double mutant exhibited increases in catalytic efficiency for both ceftazidime and aztreonam. However, the triple mutant A237G:G238S:E240K, displayed a 12-fold decrease in catalytic efficiency for ceftazidime but a 3-fold increase for aztreonam relative to the G238S:E240K double mutant. Thus, the A237G substitution increases ceftazidime hydrolysis when present alone but antagonizes ceftazidime hydrolysis when it is combined with the G238S:E240K substitutions. In contrast, the A237G substitution acts additively with the G238S:E240K substitutions to increase aztreonam hydrolysis.[1]

References

 
WikiGenes - Universities