The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-H-14760     (6R,7R)-7-[[2-(2-amino-1,3- thiazol-4-yl)-2...

Synonyms:
This record was replaced with 54197.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Fortaz

  • Of 550 evaluable episodes of fever and neutropenia, 282 were treated with ceftazidime alone and 268 with the combination [1].
  • RESULTS: Between November 1990 and October 1992, 55 hospital patients infected or colonized with ceftazidime-resistant E coli, K pneumoniae, or both were identified [2].
  • MAIN OUTCOME MEASURE: Incidence of patient infection or colonization by ceftazidime-resistant Klebsiella during 1995 (control period) compared with 1996 (intervention period) [3].
  • 11 of 12 infected patients who had malignant disease or were otherwise immunocompromised responded satisfactorily to ceftazidime; 7 of these 12 had infections caused by Pseudomonas aeruginosa [4].
  • Photosensitivity due to ambulatory intravenous ceftazidime in cystic fibrosis patient [5].
 

Psychiatry related information on Fortaz

 

High impact information on Fortaz

 

Chemical compound and disease context of Fortaz

 

Biological context of Fortaz

 

Anatomical context of Fortaz

  • In contrast, treatment with ceftazidime did not affect progenitor cell numbers [22].
  • Meropenem was significantly more effective than ceftazidime in severely neutropenic (</= 100 cells/microliter) patients (55% v 43%, respectively), bone marrow transplant patients (73% v 27%, respectively), and patients given antibiotic prophylaxis before study entry (71% v 52%, respectively) [14].
  • In the ceftazidime group, there were 26 evaluable patients with 29 infection sites: skin/skin structure (15), respiratory tract (nine), blood (three), and urinary tract (two) [23].
  • Among patients with discernible etiologic agents in samples of cerebrospinal fluid, 11 of 57 (19 percent) ceftazidime-treated patients died, and five of 27 (19 percent) patients treated with the combination died [24].
  • Multivariate logistic-regression analysis showed that recovery of the neutrophil count was the most favorable prognostic factor in a patient's response to infection, whereas the presence of gram-positive infection, acute leukemia, pulmonary or enteric infection, and therapy with ceftazidime were unfavorable factors [25].
 

Associations of Fortaz with other chemical compounds

 

Gene context of Fortaz

  • Among patients with high baseline TNF-alpha levels, there were significant increases in the IL-10/TNF-alpha ratio at both 24 and 48 h over that at admission for the ciprofloxacin group, while no differences were noted in the ceftazidime group [29].
  • However, ampD truncation products and ampD from a partially derepressed P. aeruginosa strain resulted in ceftazidime MICs of >256 microg/ml, indicating a role for these gene modifications in derepressed phenotypes [30].
  • TEM-7 is a novel broad-spectrum beta-lactamase (Bla), selected in vivo, with a resistance profile similar to that of TEM-1 and TEM-2, but extended to ceftazidime (Caz) and aztreonam [31].
  • Induction of dinB transcription mediated by ceftazidime produces an increase in the reversion of a +1 Lac frameshift mutation [32].
  • Pulmonary TNF-alpha, IL-beta, and IL-8 concentrations were attenuated in the ceftazidime group compared with those in the placebo group (p < 0.001, p = 0.02, and p = 0.003) [33].
 

Analytical, diagnostic and therapeutic context of Fortaz

References

  1. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. Pizzo, P.A., Hathorn, J.W., Hiemenz, J., Browne, M., Commers, J., Cotton, D., Gress, J., Longo, D., Marshall, D., McKnight, J. N. Engl. J. Med. (1986) [Pubmed]
  2. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. Wiener, J., Quinn, J.P., Bradford, P.A., Goering, R.V., Nathan, C., Bush, K., Weinstein, R.A. JAMA (1999) [Pubmed]
  3. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. Rahal, J.J., Urban, C., Horn, D., Freeman, K., Segal-Maurer, S., Maurer, J., Mariano, N., Marks, S., Burns, J.M., Dominick, D., Lim, M. JAMA (1998) [Pubmed]
  4. Ceftazidime--a new extended-spectrum cephalosporin. Gozzard, D.I., Geddes, A.M., Farrell, I.D., Eykyn, S.J., Phillips, I., Wise, R., Brown, R.M. Lancet (1982) [Pubmed]
  5. Photosensitivity due to ambulatory intravenous ceftazidime in cystic fibrosis patient. Vinks, S.A., Heijerman, H.G., de Jonge, P., Bakker, W. Lancet (1993) [Pubmed]
  6. Role of beta-lactamase in in vivo development of ceftazidime resistance in experimental Pseudomonas aeruginosa endocarditis. Bayer, A.S., Peters, J., Parr, T.R., Chan, L., Hancock, R.E. Antimicrob. Agents Chemother. (1987) [Pubmed]
  7. Ceftazidime encephalopathy: absence status and toxic hallucinations. Jackson, G.D., Berkovic, S.F. J. Neurol. Neurosurg. Psychiatr. (1992) [Pubmed]
  8. Effect of physical activity on the pharmacokinetics of ceftazidime in mice. Rule, R., Giampieri, J., Marchetti, S., Prozzi, G., Buschiazzo, H., de Buschiazzo, P.M. Chemotherapy. (2002) [Pubmed]
  9. Neurotoxicity associated with ceftazidime therapy in geriatric patients with renal dysfunction. Slaker, R.A., Danielson, B. Pharmacotherapy (1991) [Pubmed]
  10. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. García-Carbonero, R., Mayordomo, J.I., Tornamira, M.V., López-Brea, M., Rueda, A., Guillem, V., Arcediano, A., Yubero, A., Ribera, F., Gómez, C., Trés, A., Pérez-Gracia, J.L., Lumbreras, C., Hornedo, J., Cortés-Funes, H., Paz-Ares, L. J. Natl. Cancer Inst. (2001) [Pubmed]
  11. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Cheng, K., Smyth, R.L., Govan, J.R., Doherty, C., Winstanley, C., Denning, N., Heaf, D.P., van Saene, H., Hart, C.A. Lancet (1996) [Pubmed]
  12. Efficacy of ceftazidime in chronic melioidosis with multiple liver abscesses. Camus, C., Cartier, F., Avril, J.L., Journel, H. Lancet (1990) [Pubmed]
  13. Monotherapy for fever and neutropenia in cancer patients: a randomized comparison of ceftazidime versus imipenem. Freifeld, A.G., Walsh, T., Marshall, D., Gress, J., Steinberg, S.M., Hathorn, J., Rubin, M., Jarosinski, P., Gill, V., Young, R.C. J. Clin. Oncol. (1995) [Pubmed]
  14. Meropenem versus ceftazidime in the treatment of cancer patients with febrile neutropenia: a randomized, double-blind trial. Feld, R., DePauw, B., Berman, S., Keating, A., Ho, W. J. Clin. Oncol. (2000) [Pubmed]
  15. A prospective randomized trial of ceftazidime versus netilmicin plus mezlocillin in the empirical therapy of presumed sepsis in cirrhotic patients. McCormick, P.A., Greenslade, L., Kibbler, C.C., Chin, J.K., Burroughs, A.K., McIntyre, N. Hepatology (1997) [Pubmed]
  16. Hydrolysis of third-generation cephalosporins by class C beta-lactamases. Structures of a transition state analog of cefotoxamine in wild-type and extended spectrum enzymes. Nukaga, M., Kumar, S., Nukaga, K., Pratt, R.F., Knox, J.R. J. Biol. Chem. (2004) [Pubmed]
  17. Comparative activity of eight antimicrobial agents against clinical bacterial isolates from the United States, measured by two methods. Thornsberry, C., Yee, Y.C. Am. J. Med. (1996) [Pubmed]
  18. Multiple beta-lactam resistance in Enterobacter cloacae following ceftazidime monotherapy. Black, A.S., Cohen, J. Lancet (1985) [Pubmed]
  19. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Meyer, K.S., Urban, C., Eagan, J.A., Berger, B.J., Rahal, J.J. Ann. Intern. Med. (1993) [Pubmed]
  20. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Sideraki, V., Huang, W., Palzkill, T., Gilbert, H.F. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. Zhang, Z., Yu, Y., Musser, J.M., Palzkill, T. J. Biol. Chem. (2001) [Pubmed]
  22. Enhanced repopulation of murine hematopoietic organs in sublethally irradiated mice after treatment with ciprofloxacin. Kletter, Y., Riklis, I., Shalit, I., Fabian, I. Blood (1991) [Pubmed]
  23. Comparison of the safety and efficacy of intravenous ciprofloxacin and intravenous ceftazidime in the treatment of selected infections. Gallis, H.A., Brennan, R.O., Goodwin, S.D., Swinney, V., Rumbaugh, M.M., Drew, R.H. Am. J. Med. (1989) [Pubmed]
  24. Ceftazidime in the treatment of meningitis in infants and children over one month of age. Rodriguez, W.J., Khan, W.N., Gold, B., Feris, J., Puig, J., Sturla, C. Am. J. Med. (1985) [Pubmed]
  25. A comparison of imipenem to ceftazidime with or without amikacin as empiric therapy in febrile neutropenic patients. Rolston, K.V., Berkey, P., Bodey, G.P., Anaissie, E.J., Khardori, N.M., Joshi, J.H., Keating, M.J., Holmes, F.A., Cabanillas, F.F., Elting, L. Arch. Intern. Med. (1992) [Pubmed]
  26. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. Cantu, C., Huang, W., Palzkill, T. J. Biol. Chem. (1996) [Pubmed]
  27. Insertion mutagenesis as a tool in the modification of protein function. Extended substrate specificity conferred by pentapeptide insertions in the omega-loop of TEM-1 beta-lactamase. Hayes, F., Hallet, B., Cao, Y. J. Biol. Chem. (1997) [Pubmed]
  28. Impact of voluntary vs enforced compliance of third-generation cephalosporin use in a teaching hospital. Bamberger, D.M., Dahl, S.L. Arch. Intern. Med. (1992) [Pubmed]
  29. Comparative effects of ciprofloxacin and ceftazidime on cytokine production in patients with severe sepsis caused by gram-negative bacteria. Gogos, C.A., Skoutelis, A., Lekkou, A., Drosou, E., Starakis, I., Marangos, M.N., Bassaris, H.P. Antimicrob. Agents Chemother. (2004) [Pubmed]
  30. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Schmidtke, A.J., Hanson, N.D. Antimicrob. Agents Chemother. (2006) [Pubmed]
  31. Substitution of serine for arginine in position 162 of TEM-type beta-lactamases extends the substrate profile of mutant enzymes, TEM-7 and TEM-101, to ceftazidime and aztreonam. Collatz, E., Tran Van Nhieu, G., Billot-Klein, D., Williamson, R., Gutmann, L. Gene (1989) [Pubmed]
  32. SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. Pérez-Capilla, T., Baquero, M.R., Gómez-Gómez, J.M., Ionel, A., Martín, S., Blázquez, J. J. Bacteriol. (2005) [Pubmed]
  33. Aerosolized ceftazidime for prevention of ventilator-associated pneumonia and drug effects on the proinflammatory response in critically ill trauma patients. Wood, G.C., Boucher, B.A., Croce, M.A., Hanes, S.D., Herring, V.L., Fabian, T.C. Pharmacotherapy (2002) [Pubmed]
  34. Disposition and bioavailability of ceftazidime after intraperitoneal administration in patients receiving continuous ambulatory peritoneal dialysis. Stea, S., Bachelor, T., Cooper, M., de Souza, P., Koenig, K., Bolton, W.K. J. Am. Soc. Nephrol. (1996) [Pubmed]
  35. Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Carratalà, J., Rosón, B., Fernández-Sevilla, A., Alcaide, F., Gudiol, F. Arch. Intern. Med. (1998) [Pubmed]
 
WikiGenes - Universities