The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification of the GalNAc kinase amino acid sequence.

A new kinase that forms GalNAc-1-P was purified from pig kidney cytosol and identified on gels by labeling with N3-[32P]ATP (Pastuszak, I., Drake, R., and Elbein, A. D. (1996) J. Biol. Chem. 271, in press). A 50-kDa labeled protein was eluted, digested with trypsin, and the sequences of four peptides representing 49 amino acids showed 90% identity to sequence of human galactokinase reported to be on chromosome 15. To resolve this dilemma, activities and substrate specificities of galactokinase and GalNAc kinase from human and pig kidney, as well as of galactokinase from the yeast clone transfected with the cDNA from presumptive human galactokinase, were compared. The purified galactokinases phosphorylated galactose, but not GalNAc, whereas GalNAc kinase also phosphorylated galactose when this sugar was present at millimolar concentrations. Extracts of gal 1(-) yeast clone, transfected with presumptive human galactokinase cDNA, had very low galactokinase activity even when yeast were grown on galactose, but good activity with GalNAc. On the other hand, the wild type yeast phosphorylated galactose, but not GalNAc. These data indicate that the sequence reported for galactokinase on chromosome 15 is that of GalNAc kinase, which can phosphorylate galactose when this sugar is present at millimolar concentrations. This transfection thus allows the yeast mutant to grow slowly on galactose-containing media.[1]


  1. Identification of the GalNAc kinase amino acid sequence. Pastuszak, I., O'Donnell, J., Elbein, A.D. J. Biol. Chem. (1996) [Pubmed]
WikiGenes - Universities