A proteolytic fragment of insulin-like growth factor (IGF) binding protein-3 that fails to bind IGF is a cell growth inhibitor.
Limited proteolysis of insulin-like growth factor binding protein-3 (IGFBP-3) is now recognized as a normal process in the regulation of insulin-like growth factor (IGF) activity, its major effect being to increase IGF bioavialability. In order to characterize the proteolytic fragments of IGFBP-3, we reproduced this proteolysis in vitro using plasmin which provokes cleavages that are similar to those induced in vivo by (unidentified) specific IGFBP-3 proteases. Two major peaks were purified by RP-HPLC. One contained a 16 kDa fragment and the other comprised two fragments of 22 and 25 kDa. Competitive binding experiments showed that the 16 kDa material had no affinity for IGFs. The 22-25 kDa fragments had considerably reduced affinity, particularly for IGF-I. In a chick embryo fibroblast assay where DNA synthesis was stimulated by IGF-I or insulin, the 22-25 kDa fragments weakly inhibited IGF-I-induced cell proliferation and had no effect on stimulation by insulin. The 16 kDa fragment unexpectedly proved to be a potent inhibitor of both IGF- and insulin-induced cell growth. This proteolytic fragment of IGFBP-3 therefore exhibits intrinsic inhibitory activity.[1]References
- A proteolytic fragment of insulin-like growth factor (IGF) binding protein-3 that fails to bind IGF is a cell growth inhibitor. Lalou, C., Lassarre, C., Binoux, M. Prog. Growth Factor Res. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg