Pathways of metabolism of [1'-14C]-trans-anethole in the rat and mouse.
This study describes the metabolic fate of trans-4'-methoxyprop-[1-14C]enylbenzene, the natural flavor compound trans-anethole, in rats and mice given single doses of 250 mg/kg body weight. In both rats and mice, an essentially quantitative (> 95% of dose) recovery of 14C was obtained with the majority in the 0-24 hr urine. Separation and identification of 18 urinary anethole metabolites were achieved by radio-HPLC, chemical derivatization, and GC/ MS. Anethole undergoes three primary oxidation pathways-O-demethylation, omega-side chain oxidation, and side chain epoxidation-followed by a variety of secondary pathways of oxidation and hydration, the products of which are extensively conjugated with sulfate, glucuronic acid, glycine, and glutathione. A novel major metabolite has been characterized in the rat, apparently originating from conjugation of the epoxide with glutathione, namely S-[1-(4'-methoxyphenyl)-2-hydroxypropane]-N-acetylcysteine. These metabolites are discussed in terms of the pathways responsible for and the toxicological consequences of their formation.[1]References
- Pathways of metabolism of [1'-14C]-trans-anethole in the rat and mouse. Bounds, S.V., Caldwell, J. Drug Metab. Dispos. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg