The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Blocking effects of otilonium on Ca2+ channels and secretion in rat chromaffin cells.

We describe here the effects of otilonium bromide (an anticholinergic agent widely used as an intestinal spasmolytic) on whole-cell currents through Ca2+ channels (IBa) and catecholamine secretion in rat adrenal glands and isolated rat chromaffin cells. Otilonium blocked the peak IBa current in voltage-clamped chromaffin cells in a concentration-dependent manner; the IC50 to block IBa was 4.7 microM. Blockade was not accompanied by a significant shift in the I-V relationship for IBa, suggesting that such blockade was not affecting a specific subtype of Ca2+ channel. When given intracellularly through the patch pipette, otilonium (10 microM) did not block IBa. However, its external application to the same cell (10 microM) reversibly reduced IBa by 70%. Otilonium caused a concentration-dependent blockade of catecholamine release from perfused rat adrenal glands intermittently stimulated with methacholine, high K+ or histamine. The IC50 to block secretion after a 5 min incubation with otilonium was 0.02, 0.7 and 3 microM, respectively, for methacholine, K+ and histamine. The blocking effects of otilonium were fully reversible at concentrations below 10 microM. The Ca2+ channel agonist Bay K 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyr idine-5- carboxylate) partially antagonized the effects of otilonium on K(+)-evoked secretion and accelerated the time course of recovery from inhibition. The results are compatible with the idea that otilonium blocks Ca2+ entry into chromaffin cells by blocking voltage-dependent Ca2+ channels. This would lead to a limitation in the rise in cytosolic Ca2+ at secretory sites and to inhibition of catecholamine release in response to stimulation of chromaffin cells.[1]

References

  1. Blocking effects of otilonium on Ca2+ channels and secretion in rat chromaffin cells. Gandía, L., López, M.G., Villarroya, M., Gilabert, J.A., Cárdenas, A., García, A.G., Borges, R. Eur. J. Pharmacol. (1996) [Pubmed]
 
WikiGenes - Universities