The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Adrenal Glands

 
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 
 

Disease relevance of Adrenal Glands

 

Psychiatry related information on Adrenal Glands

 

High impact information on Adrenal Glands

  • The adrenal gland requires stimuli from peptides derived from the ACTH precursor, pro-opiomelanocortin (POMC), to maintain its tonic state [11].
  • Here we show that in mice lacking Crhr1, the medulla of the adrenal gland is atrophied and stress-induced release of adrenocorticotropic hormone (ACTH) and corticosterone is reduced [12].
  • Despite normal survival in utero, all Ftz-F1 null animals died by postnatal day 8; these animals lacked adrenal glands and gonads and were severely deficient in corticosterone, supporting adrenocortical insufficiency as the probable cause of death [13].
  • A similar construct driven by the phenylethanolamine-N-methyltransferase promoter did not cause this block, but gave transgenic mice with selective expression of esterase in the retina and the adrenal gland [14].
  • The source of the excess androgen may be either the ovaries or the adrenal glands, and distinguishing between these sources may be difficult [15].
  • The expression of neuron-specific proteins in the zona glomerulosa and/or aldosterone-producing adenomas of the human adrenal has been reported; those include synaptophysin, neuronal cell adhesion molecule (NCAM), serotonin-receptor 4 (5-HT4), metabotropic glutamate receptor 3 (GRM3 / mGluR3) among other glutamate receptors, Purkinje cell protein 4 (PCP4), metallothionein 3 (MT3), activating transcription factor 3 (ATF3), and voltage-dependent calcium channels, indicating the possible common regulatory processes between neurons and aldosterone-producing cells [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27].
 

Chemical compound and disease context of Adrenal Glands

 

Biological context of Adrenal Glands

 

Anatomical context of Adrenal Glands

 

Associations of Adrenal Glands with chemical compounds

  • It has been postulated that dehydroepiandrosterone (DHEA) and its sulfate ester, dehydroepiandrosterone sulfate (DHEAS), the major secretory products of the human adrenal gland, may be discriminators of life expectancy and aging [43].
  • The trophic actions include stimulation of angiotensin II receptors and enzymes of the aldosterone biosynthetic pathway, with corresponding enhancement of the aldosterone secretory capacity of the adrenal gland [44].
  • Using a highly specific RIA, we have now obtained evidence that Met-enkephalin-like material circulates in the plasma of normal subjects and may be secreted by the adrenal gland [45].
  • We have recently investigated the presence of immunoreactive vasopressin and the related nonapeptide oxytocin in the adrenal glands of the human, rat and cow, and report here the isolation from the Brattleboro rat adrenal of material with similar immunological, physical and biological properties to synthetic vasopressin [46].
  • Corticosterone sulphate (once called compound B, and abbreviated to BS) is produced by fetal adrenal glands and is present in greater concentrations in human fetal plasma than in maternal plasma [47].
 

Gene context of Adrenal Glands

 

Analytical, diagnostic and therapeutic context of Adrenal Glands

References

  1. Potassium chloride-induced lordosis behavior in rats is mediated by the adrenal glands. Whalen, R.E., Neubauer, B.L., Gorzalka, B.B. Science (1975) [Pubmed]
  2. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Cole, T.J., Blendy, J.A., Monaghan, A.P., Krieglstein, K., Schmid, W., Aguzzi, A., Fantuzzi, G., Hummler, E., Unsicker, K., Schütz, G. Genes Dev. (1995) [Pubmed]
  3. Adrenal insufficiency after operative removal of apparently nonfunctioning adrenal adenomas. Huiras, C.M., Pehling, G.B., Caplan, R.H. JAMA (1989) [Pubmed]
  4. Methionine-enkephalin and leucine-enkephalin in human sympathoadrenal system and pheochromocytoma. Yoshimasa, T., Nakao, K., Ohtsuki, H., Li, S., Imura, H. J. Clin. Invest. (1982) [Pubmed]
  5. Expression of p21(WAF1/CIP1/SDI1) and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. Didenko, V.V., Wang, X., Yang, L., Hornsby, P.J. J. Clin. Invest. (1996) [Pubmed]
  6. Electroconvulsive shock increases tyrosine hydroxylase activity in the brain and adrenal gland of the rat. Masserano, J.M., Takimoto, G.S., Weiner, N. Science (1981) [Pubmed]
  7. Biology of posttraumatic stress disorder. Yehuda, R. The Journal of clinical psychiatry. (2001) [Pubmed]
  8. Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat. Vrang, N., Larsen, P.J., Kristensen, P., Tang-Christensen, M. Endocrinology (2000) [Pubmed]
  9. Metabolic effects of exercise. I. Effect of exercise on serum lipids and lipogenesis in rats. Lopez, A., Rene, A., Bell, L., Hebert, J.A. Proc. Soc. Exp. Biol. Med. (1975) [Pubmed]
  10. A selective genetic analysis of the Syracuse high- and low-avoidance (SHA/Bru and SLA/Bru) strains of rats (Rattus norvegicus). Brush, F.R., Gendron, C.M., Isaacson, M.D. Behav. Brain Res. (1999) [Pubmed]
  11. Characterization of a serine protease that cleaves pro-gamma-melanotropin at the adrenal to stimulate growth. Bicknell, A.B., Lomthaisong, K., Woods, R.J., Hutchinson, E.G., Bennett, H.P., Gladwell, R.T., Lowry, P.J. Cell (2001) [Pubmed]
  12. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J.M., Stalla, G.K., Blanquet, V., Steckler, T., Holsboer, F., Wurst, W. Nat. Genet. (1998) [Pubmed]
  13. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Luo, X., Ikeda, Y., Parker, K.L. Cell (1994) [Pubmed]
  14. Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Varki, A., Hooshmand, F., Diaz, S., Varki, N.M., Hedrick, S.M. Cell (1991) [Pubmed]
  15. ACTH stimulation tests and plasma dehydroepiandrosterone sulfate levels in women with hirsutism. Siegel, S.F., Finegold, D.N., Lanes, R., Lee, P.A. N. Engl. J. Med. (1990) [Pubmed]
  16. Neuroendocrine properties of adrenocortical cells. Ehrhart-Bornstein, M., Hilbers, U. Horm. Metab. Res. (1998) [Pubmed]
  17. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. Felizola, S.J., Nakamura, Y., Ono, Y., Kitamura, K., Kikuchi, K., Onodera, Y., Ise, K., Takase, K., Sugawara, A., Hattangady, N., Rainey, W.E., Satoh, F., Sasano, H. J. Mol. Endocrinol. (2014) [Pubmed]
  18. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. Ye, P., Mariniello, B., Mantero, F., Shibata, H., Rainey, W.E. J. Endocrinol. (2007) [Pubmed]
  19. Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing adenomas. Cartier, D., Jégou, S., Parmentier, F., Lihrmann, I., Louiset, E., Kuhn, J.M., Bastard, C., Plouin, P.F., Godin, M., Vaudry, H., Lefebvre, H. Eur. J. Endocrinol. (2005) [Pubmed]
  20. Effect of prolonged administration of the serotonin4 (5-HT4) receptor agonist cisapride on aldosterone secretion in healthy volunteers. Lefebvre, H., Gonzalez, K.N., Contesse, V., Delarue, C., Vaudry, H., Kuhnl, J.M. Endocr. Res. (1998) [Pubmed]
  21. Effect of serotonin4 (5-HT4) receptor agonists on aldosterone secretion in idiopathic hyperaldosteronism. Lefebvre, H., Cartier, D., Duparc, C., Contesse, V., Lihrmann, I., Delarue, C., Vaudry, H., Fischmeister, R., Kuhn, J.M. Endocr. Res. (2000) [Pubmed]
  22. Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: the metabotropic pathway. Felizola, S.J., Nakamura, Y., Satoh, F., Morimoto, R., Kikuchi, K., Nakamura, T., Hozawa, A., Wang, L., Onodera, Y., Ise, K., McNamara, K.M., Midorikawa, S., Suzuki, S., Sasano, H. Mol. Cell. Endocrinol. (2014) [Pubmed]
  23. Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Felizola, S.J., Nakamura, Y., Arata, Y., Ise, K., Satoh, F., Rainey, W.E., Midorikawa, S., Suzuki, S., Sasano, H. Endocr. Pathol. (2014) [Pubmed]
  24. Activating transcription factor 3 (ATF3) in the human adrenal cortex: its possible involvement in aldosterone biosynthesis. Felizola, S.J., Nakamura, Y., Ozawa, Y., Ono, Y., Morimoto, R., Midorikawa, S., Suzuki, S., Satoh, F., Sasano, H. Tohoku. J. Exp. Med. (2014) [Pubmed]
  25. Voltage-gated calcium channels in the human adrenal and primary aldosteronism. Felizola, S.J., Maekawa, T., Nakamura, Y., Satoh, F., Ono, Y., Kikuchi, K., Aritomi, S., Ikeda, K., Yoshimura, M., Tojo, K., Sasano, H. J. Steroid. Biochem. Mol. Biol. (2014) [Pubmed]
  26. Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. Hu, C., Rusin, C.G., Tan, Z., Guagliardo, N.A., Barrett, P.Q. J. Clin. Invest. (2012) [Pubmed]
  27. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Azizan, E.A., Poulsen, H., Tuluc, P., Zhou, J., Clausen, M.V., Lieb, A., Maniero, C., Garg, S., Bochukova, E.G., Zhao, W., Shaikh, L.H., Brighton, C.A., Teo, A.E., Davenport, A.P., Dekkers, T., Tops, B., Küsters, B., Ceral, J., Yeo, G.S., Neogi, S.G., McFarlane, I., Rosenfeld, N., Marass, F., Hadfield, J., Margas, W., Chaggar, K., Solar, M., Deinum, J., Dolphin, A.C., Farooqi, I.S., Striessnig, J., Nissen, P., Brown, M.J. Nat. Genet. (2013) [Pubmed]
  28. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Hamelink, C., Tjurmina, O., Damadzic, R., Young, W.S., Weihe, E., Lee, H.W., Eiden, L.E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  29. Adrenal glucocorticoids regulate adipsin gene expression in genetically obese mice. Spiegelman, B.M., Lowell, B., Napolitano, A., Dubuc, P., Barton, D., Francke, U., Groves, D.L., Cook, K.S., Flier, J.S. J. Biol. Chem. (1989) [Pubmed]
  30. Expression and localization of human dopamine D2 and D4 receptor mRNA in the adrenal gland, aldosterone-producing adenoma, and pheochromocytoma. Wu, K.D., Chen, Y.M., Chu, T.S., Chueh, S.C., Wu, M.H., Bor-Shen, H. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  31. Regulation of growth of the adrenal gland in DOC-salt hypertension. Role of angiotensin II receptor subtypes. Elijovich, F., Zhao, H.W., Laffer, C.L., Du, Y., DiPette, D.J., Inagami, T., Wang, D.H. Hypertension (1997) [Pubmed]
  32. Dopamine D2 receptor gene expression and binding sites in adrenal medulla and pheochromocytoma. Pupilli, C., Lanzillotti, R., Fiorelli, G., Selli, C., Gomez, R.A., Carey, R.M., Serio, M., Mannelli, M. J. Clin. Endocrinol. Metab. (1994) [Pubmed]
  33. Disruption of cholesterol homeostasis by plant sterols. Yang, C., Yu, L., Li, W., Xu, F., Cohen, J.C., Hobbs, H.H. J. Clin. Invest. (2004) [Pubmed]
  34. Expression of the DBA/2J Ren-2 gene in the adrenal gland of transgenic mice. Mullins, J.J., Sigmund, C.D., Kane-Haas, C., Gross, K.W., McGowan, R.A. EMBO J. (1989) [Pubmed]
  35. Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland. Day, R., Schafer, M.K., Collard, M.W., Watson, S.J., Akil, H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  36. Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Green, D.D., Yang, S.I., Mumby, M.C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  37. Liver mRNA probes disclose two cytochrome P-450 genes duplicated in tandem with the complement C4 loci of the mouse H-2S region. Amor, M., Tosi, M., Duponchel, C., Steinmetz, M., Meo, T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  38. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J., Glass, C.K. Nature (1998) [Pubmed]
  39. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Bredt, D.S., Hwang, P.M., Snyder, S.H. Nature (1990) [Pubmed]
  40. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Vaudry, D., Gonzalez, B.J., Basille, M., Yon, L., Fournier, A., Vaudry, H. Pharmacol. Rev. (2000) [Pubmed]
  41. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Shutter, J.R., Graham, M., Kinsey, A.C., Scully, S., Lüthy, R., Stark, K.L. Genes Dev. (1997) [Pubmed]
  42. Receptor-mediated regional sympathetic nerve activation by leptin. Haynes, W.G., Morgan, D.A., Walsh, S.A., Mark, A.L., Sivitz, W.I. J. Clin. Invest. (1997) [Pubmed]
  43. A prospective study of dehydroepiandrosterone sulfate, mortality, and cardiovascular disease. Barrett-Connor, E., Khaw, K.T., Yen, S.S. N. Engl. J. Med. (1986) [Pubmed]
  44. Circulating angiotensin II and adrenal receptors after nephrectomy. Aguilera, G., Schirar, A., Baukal, A., Catt, K.J. Nature (1981) [Pubmed]
  45. Met-enkephalin circulates in human plasma. Clement-Jones, V., Lowry, P.J., Rees, L.H., Besser, G.M. Nature (1980) [Pubmed]
  46. Brattleboro rat adrenal contains vasopressin. Nussey, S.S., Ang, V.T., Jenkins, J.S., Chowdrey, H.S., Bisset, G.W. Nature (1984) [Pubmed]
  47. Direct evidence of sudden rise in fetal corticoids late in human gestation. Fencl, M.D., Stillman, R.J., Cohen, J., Tulchinsky, D. Nature (1980) [Pubmed]
  48. Identification of somatostatin receptor subtypes and an implication for the efficacy of somatostatin analogue SMS 201-995 in treatment of human endocrine tumors. Kubota, A., Yamada, Y., Kagimoto, S., Shimatsu, A., Imamura, M., Tsuda, K., Imura, H., Seino, S., Seino, Y. J. Clin. Invest. (1994) [Pubmed]
  49. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Sadovsky, Y., Crawford, P.A., Woodson, K.G., Polish, J.A., Clements, M.A., Tourtellotte, L.M., Simburger, K., Milbrandt, J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  50. Genetic alteration of catecholamine specificity in transgenic mice. Kobayashi, K., Sasaoka, T., Morita, S., Nagatsu, I., Iguchi, A., Kurosawa, Y., Fujita, K., Nomura, T., Kimura, M., Katsuki, M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  51. Intact proenkephalin is the major enkephalin-containing peptide produced in rat adrenal glands after denervation. Fleminger, G., Howells, R.D., Kilpatrick, D.L., Udenfriend, S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  52. A promoter within intron 35 of the human C4A gene initiates abundant adrenal-specific transcription of a 1 kb RNA: location of a cryptic CYP21 promoter element? Tee, M.K., Babalola, G.O., Aza-Blanc, P., Speek, M., Gitelman, S.E., Miller, W.L. Hum. Mol. Genet. (1995) [Pubmed]
  53. Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. Marquèze, B., Boudier, J.A., Mizuta, M., Inagaki, N., Seino, S., Seagar, M. J. Neurosci. (1995) [Pubmed]
  54. Changes in tonicity of perfusion medium cause prolonged opening of calcium channels of the rat chromaffin cells to evoke explosive secretion of catecholamines. Wakade, A.R., Malhotra, R.K., Sharma, T.R., Wakade, T.D. J. Neurosci. (1986) [Pubmed]
  55. Receptor autoradiography in thoracic spinal cord: correlation of neurotransmitter binding sites with sympathoadrenal neurons. Seybold, V.S., Elde, R.P. J. Neurosci. (1984) [Pubmed]
 
WikiGenes - Universities