The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple.

Pantoea citrea, a member of the family Enterobacteriaceae, causes pink disease of pineapple, whose symptom is characterized by the formation of pink to brown discolorations of the infected portions of the pineapple fruit cylinder upon canning. Molecular genetic approaches were applied to elucidate the mechanism responsible for this fruit discoloration. A P. citrea mutant strain, CMC6, defective in its ability to cause pink disease and fruit discoloration, was generated by nitrosoguanidine mutagenesis. A DNA fragment that restored these activities was isolated by screening a genomic cosmid library of P. citrea. A large open reading frame of 2,361 bp, identified by nucleotide sequencing of a subclone of the complementing DNA, showed high similarities to identified genes encoding glucose dehydrogenase ( GDH) in Escherichia coli, Acinetobacter calcoaceticus, and Gluconobacter oxydans. The predicted amino acid sequence of GDH of P. citrea was identical to known GDHs in these bacteria by 54, 44, and 34%, respectively. GDH of P. citrea has a predicted molecular mass of 86.2 kDa, contains a conserved binding domain for the cofactor pyrroloquinoline quinone, and possesses GDH activity as demonstrated by biochemical assay. GDH is the key branch point enzyme leading to the biosynthesis of gluconate, which in turn serves as the substrate leading to the formation of 2-ketogluconate, 2,5-diketogluconate, 6-phosphogluconate, and 2-keto-6-phosphogluconate. Addition of gluconate to CMC6 restores the juice- and fruit-discoloring activity. Although the pigments formed by heating (or canning) have not been identified, it is clear that GDH is one of the enzymes required for pigment formation leading to pink disease.[1]

References

 
WikiGenes - Universities