The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Prions and RNA viruses of Saccharomyces cerevisiae.

Saccharomyces cerevisiae is host to the dsRNA viruses L-A (including its killer toxin-encoding satellite, M) and L-BC, the 20S and 23S ssRNA replicons, and the putative prions, [URE3] and [PSI]. review the genetic and biochemical evidence indicating that [URE3] and [PSI] are prion forms of Ure2p and Sup35p, respectively. Each has an N-terminal domain involved in propagation or generation of the prion state and a C-terminal domain responsible for the protein's normal function, nitrogen regulation, or translation termination, respectively. The L-A dsRNA virus expression, replication, and RNA packaging are reviewed. L-A uses a -1 ribosomal frameshift to produce a Gag-Pol fusion protein. The host SK12, SK13 and SK18 proteins block translation of nonpoly(A) mRNAs (such as viral mRNA). Mutants deficient in 60S ribosomal subunits replicate L-A poorly, but not if cells are also ski-. Interaction of 60S subunits with the 3' polyA is suggested. SKI1/XRN1 is a 5'--> 3' exoribonuclease that degrades uncapped mRNAs. The viral Gag protein decapitates cellular mRNAs apparently to decoy this enzyme from working on viral mRNA.[1]

References

  1. Prions and RNA viruses of Saccharomyces cerevisiae. Wickner, R.B. Annu. Rev. Genet. (1996) [Pubmed]
 
WikiGenes - Universities