The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Frameshifting, Ribosomal

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Frameshifting, Ribosomal


High impact information on Frameshifting, Ribosomal


Chemical compound and disease context of Frameshifting, Ribosomal


Biological context of Frameshifting, Ribosomal


Anatomical context of Frameshifting, Ribosomal


Associations of Frameshifting, Ribosomal with chemical compounds

  • A upf3-Delta strain demonstrates increased sensitivity to the antibiotic paromomycin and increased programmed -1 ribosomal frameshift efficiency resulting in loss of the M1 virus [20].
  • In spe2 delta mutants of Saccharomyces cerevisiae, which cannot make spermidine as a result of a deletion in the SPE2 gene, there is a marked elevation in +1 but no change in -1 ribosomal frameshifting [10].
  • A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting [21].
  • A sequence which is located immediately downstream of the frameshift signal and has the potential to form a double stem-loop structure can significantly enhance translational frameshifting in the presence of the peptidyl-transferase inhibitor puromycin [22].
  • These findings suggest that the mechanism of ribosomal frameshifting at the PVM signal is different from the one described by the 'simultaneous slippage' model in that only the string of four adenosine nucleotides represents the slippery sequence involved in a -1 P-site slippage [23].

Gene context of Frameshifting, Ribosomal

  • Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency [24].
  • The Drosophila gene for antizyme requires ribosomal frameshifting for expression and contains an intronic gene for snRNP Sm D3 on the opposite strand [25].
  • Mutations in the RPL3 gene, which encodes a ribosomal protein located at the peptidyltransferase center, promote approximately three- to fourfold increases in programmed -1 ribosomal frameshift efficiencies and loss of the M1 killer virus of yeast [26].
  • We also demonstrate that signals found in the yeast RAS1 and the human CCR5 genes were able to promote significant levels of programmed -1 ribosomal frameshifting [27].
  • RESULTS: We identified a potential site of +1 ribosomal frameshifting in the EST3 coding sequence and demonstrated that translation both upstream and downstream of this site is required for EST3 function [28].


  1. Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Chang, L.J., Pryciak, P., Ganem, D., Varmus, H.E. Nature (1989) [Pubmed]
  2. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Tsuchihashi, Z., Brown, P.O. Genes Dev. (1992) [Pubmed]
  3. Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems. Dinman, J.D., Ruiz-Echevarria, M.J., Czaplinski, K., Peltz, S.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. Mechanism of translation of the hepadnaviral polymerase (P) gene. Chang, L.J., Ganem, D., Varmus, H.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  5. Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region. Vickers, T.A., Ecker, D.J. Nucleic Acids Res. (1992) [Pubmed]
  6. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J., Varmus, H.E. Nature (1988) [Pubmed]
  7. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Björk, G.R., Wikström, P.M., Byström, A.S. Science (1989) [Pubmed]
  8. Reprogrammed genetic decoding in cellular gene expression. Namy, O., Rousset, J.P., Napthine, S., Brierley, I. Mol. Cell (2004) [Pubmed]
  9. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Hayashi, S., Murakami, Y., Matsufuji, S. Trends Biochem. Sci. (1996) [Pubmed]
  10. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Balasundaram, D., Dinman, J.D., Wickner, R.B., Tabor, C.W., Tabor, H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  11. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. Gurvich, O.L., Baranov, P.V., Gesteland, R.F., Atkins, J.F. J. Bacteriol. (2005) [Pubmed]
  12. Isoleucine starvation caused by sulfometuron methyl in Salmonella typhimurium measured by translational frameshifting. Kaplun, A., Chipman, D.M., Barak, Z. Microbiology (Reading, Engl.) (2002) [Pubmed]
  13. Mass spectrometric analysis of human soluble catechol O-methyltransferase expressed in Escherichia coli. Identification of a product of ribosomal frameshifting and of reactive cysteines involved in S-adenosyl-L-methionine binding. Vilbois, F., Caspers, P., da Prada, M., Lang, G., Karrer, C., Lahm, H.W., Cesura, A.M. Eur. J. Biochem. (1994) [Pubmed]
  14. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Wickner, R.B. Annu. Rev. Microbiol. (1992) [Pubmed]
  15. Partial rescue of human carbonic anhydrase II frameshift mutation by ribosomal frameshift. Hu, P.Y., Waheed, A., Sly, W.S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. The Mof2/Sui1 protein is a general monitor of translational accuracy. Cui, Y., Dinman, J.D., Kinzy, T.G., Peltz, S.W. Mol. Cell. Biol. (1998) [Pubmed]
  17. Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication. van Dinten, L.C., Rensen, S., Gorbalenya, A.E., Snijder, E.J. J. Virol. (1999) [Pubmed]
  18. Expression and processing of human immunodeficiency virus type 1 gag and pol genes by cells infected with a recombinant vaccinia virus. Gowda, S.D., Stein, B.S., Steimer, K.S., Engleman, E.G. J. Virol. (1989) [Pubmed]
  19. Chimeric HIV-1 virus-like particles containing gp120 epitopes as a result of a ribosomal frameshift elicit Gag- and SU-specific murine cytotoxic T-lymphocyte activities. Tobin, G.J., Li, G.H., Fong, S.E., Nagashima, K., Gonda, M.A. Virology (1997) [Pubmed]
  20. The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Ruiz-Echevarría, M.J., Yasenchak, J.M., Han, X., Dinman, J.D., Peltz, S.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Cornish, P.V., Hennig, M., Giedroc, D.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Triple decoding of hepatitis C virus RNA by programmed translational frameshifting. Choi, J., Xu, Z., Ou, J.H. Mol. Cell. Biol. (2003) [Pubmed]
  23. The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Gramstat, A., Prüfer, D., Rohde, W. Nucleic Acids Res. (1994) [Pubmed]
  24. Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency. Cui, Y., Dinman, J.D., Peltz, S.W. EMBO J. (1996) [Pubmed]
  25. The Drosophila gene for antizyme requires ribosomal frameshifting for expression and contains an intronic gene for snRNP Sm D3 on the opposite strand. Ivanov, I.P., Simin, K., Letsou, A., Atkins, J.F., Gesteland, R.F. Mol. Cell. Biol. (1998) [Pubmed]
  26. Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Peltz, S.W., Hammell, A.B., Cui, Y., Yasenchak, J., Puljanowski, L., Dinman, J.D. Mol. Cell. Biol. (1999) [Pubmed]
  27. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Hammell, A.B., Taylor, R.C., Peltz, S.W., Dinman, J.D. Genome Res. (1999) [Pubmed]
  28. Programmed translational frameshifting in a gene required for yeast telomere replication. Morris, D.K., Lundblad, V. Curr. Biol. (1997) [Pubmed]
WikiGenes - Universities