The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Protein disulfide isomerase and newly synthesized procollagen chains form higher-order structures in the lumen of the endoplasmic reticulum.

A number of proteins that act as necessary catalysts for correct protein folding and oligomerization in the endoplasmic reticulum (ER) are known to be retained in the organelle via the KDEL-receptor mediated retrieval mechanism. However, a complementary system that may help to retain these proteins in the organelle lumen has been suggested to exist and likely involves physical protein-protein interactions at the level of endoplasmic reticulum (ER) itself. In this report, we provide both morphological and biochemical evidence in support of this proposal. We show that in collagen-secreting human skin fibroblasts, protein disulfide isomerase and newly synthesized procollagen chains exist predominantly in an "aggregated" state, and form a reticular-like matrix in the ER lumen in vivo. The size of the aggregates was found to be variable, and may exceed 1.5 million Da. Aggregate formation appeared to be transient and to involve multiple types of protein-protein interactions, including formation of aberrant disulfide bonds. Association of protein disulfide isomerase, on the other hand, was found to require at least partly function-related disulfide bonds. These results support the existence of a reticular-like matrix in the ER lumen, and suggest that aggregation may be part of the normal maturation pathway during collagen biosynthesis.[1]

References

 
WikiGenes - Universities