Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs.
Exocytosis and the cell-averaged cytosolic [Ca2+], [Ca2+]i, were tracked in single gonadotrophs. Cells released 100 granules/s at 1 microM = [Ca2+]i when gonadotropin-releasing hormone (GnRH) activated IP3-mediated Ca2+ release from internal stores, but only 1 granule/s when [Ca2+]i was raised uniformly to 1 microM by other means. Strong exocytosis was then seen only at higher [Ca2+]i (half-maximal at 16 microM). Parallel second messengers did not contribute to GnRH-induced exocytosis, because IP3 alone was as effective as GnRH, and because even GnRH failed to trigger rapid exocytosis when the [Ca2+]i rise was blunted by EGTA. When [Ca2+]i was released from stores, exocytosis depended on [Ca2+]i rising rapidly, as if governed by Ca2+ flux into the cytosol. We suggest that IP3 releases Ca2+ selectively from subsurface cisternae, raising [Ca2+] near exocytic sites 5-fold above the cell average.[1]References
- Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Tse, F.W., Tse, A., Hille, B., Horstmann, H., Almers, W. Neuron (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg