The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Engineering pathways for malate degradation in Saccharomyces cerevisiae.

Deacidification of grape musts is crucial for the production of well-balanced wines, especially in colder regions of the world. The major acids in wine are tartaric and malic acid. Saccharomyces cerevisiae cannot degrade malic acid efficiently due to the lack of a malate transporter and the low substrate affinity of its malic enzyme. We have introduced efficient pathways for malate degradation in S. cerevisiae by cloning and expressing the Schizosaccharomyces pombe malate permease (mae1) gene with either the S. pombe malic enzyme (mae2) or Lactococcus lactis malolactic (mleS) gene in this yeast. Under aerobic conditions, the recombinant strain expressing the mae1 and mae2 genes efficiently degraded 8 g/L of malate in a glycerol-ethanol medium within 7 days. The recombinant malolactic strain of S. cerevisiae (mae1 and mleS genes) fermented 4.5 g/L of malate in a synthetic grape must within 4 days.[1]

References

  1. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Volschenk, H., Viljoen, M., Grobler, J., Petzold, B., Bauer, F., Subden, R.E., Young, R.A., Lonvaud, A., Denayrolles, M., van Vuuren, H.J. Nat. Biotechnol. (1997) [Pubmed]
 
WikiGenes - Universities