Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stargazer.
The excitability of layer V cortical pyramidal neurons was studied in vitro in the single-locus mutant mouse stargazer (stg), a genetic model of spike wave epilepsy. Field recordings in neocortical slices from mutant mice bathed in artificial cerebrospinal fluid revealed spontaneous synchronous network discharges that were never present in wild-type slices. Intracellular and whole cell recordings from stg/stg neurons in deep layers showed spontaneous giant depolarizing excitatory post-synaptic potentials generating bursts of action potentials, and a 78% reduction in the afterburst hyperpolarization. Whole cell recordings revealed gene-linked differences in active membrane properties in two types of regular spiking neurons. Single action potential rise and decay times were reduced, and the rheobase current was decreased by 68% in mutant cells. Plots of spike frequency-current relationships revealed that the gain of this relation was augmented by 29% in the mutant. Comparisons of visually identified pyramidal neurons firing properties in both genotypes revealed no difference in single action potential afterhyperpolarization. Voltage-clamp recordings showed an approximately threefold amplitude increase in a cesium-sensitive inward rectifier. No cell density or soma size differences were observed in the layer V pyramidal neuron population between the two genotypes. These results demonstrate an autonomous increase in cortical network excitability in a genetic epilepsy model. This defect could lower the threshold for aberrant thalamocortical spike wave oscillations in vivo, and may contribute to the mechanism of one form of inherited absence epilepsy.[1]References
- Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stargazer. Di Pasquale, E., Keegan, K.D., Noebels, J.L. J. Neurophysiol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg