The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

El1  -  epilepsy 1

Mus musculus

Synonyms: El, El-1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of El1

 

Psychiatry related information on El1

 

High impact information on El1

 

Chemical compound and disease context of El1

 

Biological context of El1

 

Anatomical context of El1

 

Associations of El1 with chemical compounds

  • We investigated the effects of 17 beta-estradiol (E2) and progesterone (PG) on seizure sensitivity in two genetically epilepsy-prone strains, the DBA/2J and the C57/EL hybrid [28].
  • No significant differences were found among the B6, DDY, and EL mice for the release of glutamate (23.0 +/- 2.0, 32.3 +/- 5.8, and 25.9 +/- 2.6, respectively) or GABA (23.5 +/- 0.7, 19.5 +/- 3.2, and 21.8 +/- 3.2, respectively) [29].
  • Thus, enhanced aspartate release precedes the onset of EL seizures and may be related to the cause rather than to the effects of seizure activity [29].
  • This increase plateaued at 21 +/- 4% in El mice and 28 +/- 3% in ddY control mice after administration of phenytoin for seven days [24].
  • Effect of convulsions of the synthesis of heterogeneous nuclear RNA associated with polyadenylate and oligoadenylate sequences from El mouse brain as a convulsive strain [30].
 

Physical interactions of El1

  • 6 The results indicate that in vivo, NMDA receptors are not maximally potentiated by endogenous glycine and suggest an important involvement of the glycine modulatory site on the NMDA receptor/ion channel complex in the pathophysiology of epilepsy [31].
 

Regulatory relationships of El1

  • These findings show that the seizure-susceptible El mouse kindles more rapidly than the genetically similar but nonepileptic ddY control and suggest that an inherited seizure susceptibility accelerates the kindling rate [32].
  • These results provide evidence that signaling through GFR alpha 2 is involved in mechanisms regulating the development and persistence of kindling epilepsy [33].
  • Our data suggest that BDNF signaling may partly mediate the development of epilepsy and propose that regrowth or repair processes initiated by status epilepticus and promoted by BDNF signaling may not be as advantageous as previously thought [34].
  • Involvement of Scn1b and Kcna1 ion channels in audiogenic seizures and PTZ-induced epilepsy [35].
  • To establish a link between adenosine kinase expression and seizure activity, we analyzed the expression of adenosine kinase in the brain of control mice and in a kainic acid-induced mouse model of mesial temporal lobe epilepsy [36].
 

Other interactions of El1

  • In this study, we cloned and sequenced the cDNA for 3-HAO and showed that its expression in the brain of El mice was higher than that of control ddY mice [37].
  • These results confirm El2 as an important QTL and show that it has significant phenotypic effects in the absence of other EL-derived alleles, including El1 [38].
  • Six seizure frequency quantitative trait loci (QTLs), El1-El6, were previously mapped in crosses between EL and non-epileptic strains using mechanical tossing procedures beginning at 30 days of age [21].
  • The slow-wave epilepsy mouse phenotype is the result of loss of function of the ubiquitous sodium hydrogen exchanger NHEI [39].
  • Thus, the GRY rat with P/Q-type Ca(2+) channel disorders is a useful model for studying absence epilepsy and Cacna1a-related diseases [40].
 

Analytical, diagnostic and therapeutic context of El1

  • Animal models of inherited epilepsy [1].
  • The genetic absence epilepsy rat has age-related spontaneous seizures characterized by motor arrest and head drops that are correlated with generalized spike-wave on the electroencephalogram (EEG) [1].
  • After cessation of treatment with phenytoin, [3H]saxitoxin binding capacity returned to the basal level within two weeks in both ddY and El brains [24].
  • To date, molecular cloning technologies has elucidated the primary basis of most of the known single locus epilepsy mutants [41].
  • Brain distribution after i.v. injection of 65ZnCl2 into El mice, an animal model of genetically determined epilepsy, was studied by autoradiography to study the utilization of zinc in the brain [42].

References

  1. Animal models of inherited epilepsy. Buchhalter, J.R. Epilepsia (1993) [Pubmed]
  2. Migraine, ataxia and epilepsy: a challenging spectrum of genetically determined calcium channelopathies. Dutch Migraine Genetics Research Group. Terwindt, G.M., Ophoff, R.A., Haan, J., Sandkuijl, L.A., Frants, R.R., Ferrari, M.D. Eur. J. Hum. Genet. (1998) [Pubmed]
  3. Abnormally high activity of 3-hydroxyanthranilate 3,4-dioxygenase in brain of epilepsy-prone El mice. Nakano, K., Asai, H., Kitoh, J. Brain Res. (1992) [Pubmed]
  4. Platelet-derived growth factor B-chain homodimer suppressing a convulsion of epilepsy model mouse El. Masuda, Y., Miura, N., Kawarada, Y., Kawagoe, M., Shimizu, T., Sugiyama, T., Hishikawa, Y. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  5. Zinc alters conformation and inhibits biological activities of nerve growth factor and related neurotrophins. Ross, G.M., Shamovsky, I.L., Lawrance, G., Solc, M., Dostaler, S.M., Jimmo, S.L., Weaver, D.F., Riopelle, R.J. Nat. Med. (1997) [Pubmed]
  6. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., Julius, D. Nature (1995) [Pubmed]
  7. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Raux, G., Bumsel, E., Hecketsweiler, B., van Amelsvoort, T., Zinkstok, J., Manouvrier-Hanu, S., Fantini, C., Br??vi??re, G.M., Di Rosa, G., Pustorino, G., Vogels, A., Swillen, A., Legallic, S., Bou, J., Opolczynski, G., Drouin-Garraud, V., Lemarchand, M., Philip, N., G??rard-Desplanches, A., Carlier, M., Philippe, A., Nolen, M.C., Heron, D., Sarda, P., Lacombe, D., Coizet, C., Alembik, Y., Layet, V., Afenjar, A., Hannequin, D., Demily, C., Petit, M., Thibaut, F., Frebourg, T., Campion, D. Hum. Mol. Genet. (2007) [Pubmed]
  8. In vivo imaging of dendritic spines during electrographic seizures. Rensing, N., Ouyang, Y., Yang, X.F., Yamada, K.A., Rothman, S.M., Wong, M. Ann. Neurol. (2005) [Pubmed]
  9. Histone deacetylase inhibitors promote osteoblast maturation. Schroeder, T.M., Westendorf, J.J. J. Bone Miner. Res. (2005) [Pubmed]
  10. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Letts, V.A., Felix, R., Biddlecome, G.H., Arikkath, J., Mahaffey, C.L., Valenzuela, A., Bartlett, F.S., Mori, Y., Campbell, K.P., Frankel, W.N. Nat. Genet. (1998) [Pubmed]
  11. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Brennan, T.J., Seeley, W.W., Kilgard, M., Schreiner, C.E., Tecott, L.H. Nat. Genet. (1997) [Pubmed]
  12. Ceruloplasmin gene defect associated with epilepsy in EL mice. Garey, C.E., Schwarzman, A.L., Rise, M.L., Seyfried, T.N. Nat. Genet. (1995) [Pubmed]
  13. Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Toth, M., Grimsby, J., Buzsaki, G., Donovan, G.P. Nat. Genet. (1995) [Pubmed]
  14. Ceruloplasmin gene defect associated with epilepsy in EL mice. Garey, C.E., Schwarzman, A.L., Rise, M.L., Seyfried, T.N. Nat. Genet. (1994) [Pubmed]
  15. Local cerebral glucose utilization in epileptic seizures of the mutant El mouse. Suzuki, J., Nakamoto, Y., Shinkawa, Y. Brain Res. (1983) [Pubmed]
  16. Endogenous methionine enkephalin may play an anticonvulsant role in the seizure-susceptible El mouse. Koide, S., Onishi, H., Katayama, M., Yamagami, S. Neurochem. Res. (1993) [Pubmed]
  17. Clinico-ECoG correlate of megimide-induced epileptic seizures in epilepsy-prone El and its mother strain nonepileptic ddY mice. Nakano, H., Saito, K., Suzuki, K. Physiol. Behav. (1996) [Pubmed]
  18. The effect of phenobarbital on the multiple neuronal activity in the hippocampus of El mice. Akasaki, Y. Jpn. J. Psychiatry Neurol. (1993) [Pubmed]
  19. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., Wada, K. Science (1997) [Pubmed]
  20. New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Frankel, W.N., Valenzuela, A., Lutz, C.M., Johnson, E.W., Dietrich, W.F., Coffin, J.M. Mamm. Genome (1995) [Pubmed]
  21. Environmental influences on epilepsy gene mapping in EL mice. Poderycki, M.J., Simoes, J.M., Todorova, M.T., Neumann, P.E., Seyfried, T.N. J. Neurogenet. (1998) [Pubmed]
  22. Genes for epilepsy mapped in the mouse. Rise, M.L., Frankel, W.N., Coffin, J.M., Seyfried, T.N. Science (1991) [Pubmed]
  23. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Burgess, D.L., Noebels, J.L. Epilepsy Res. (1999) [Pubmed]
  24. Differential up-regulation of voltage-dependent Na+ channels induced by phenytoin in brains of genetically seizure-susceptible (E1) and control (ddY) mice. Sashihara, S., Yanagihara, N., Izumi, F., Murai, Y., Mita, T. Neuroscience (1994) [Pubmed]
  25. Synaptic vesicle glutamate uptake in epileptic (EL) mice. Lewis, S.M., Lee, F.S., Todorova, M., Seyfried, T.N., Ueda, T. Neurochem. Int. (1997) [Pubmed]
  26. Electrical and chemical long-term depression do not attenuate low-Mg2+-induced epileptiform activity in the entorhinal cortex. Solger, J., Heinemann, U., Behr, J. Epilepsia (2005) [Pubmed]
  27. Increased expression of mitochondrial respiratory enzymes in the brain of activated epilepsy-prone El mice. Yamada, Y., Nakano, K. Brain Res. Mol. Brain Res. (1999) [Pubmed]
  28. Effects of estradiol and progesterone on seizure sensitivity in oophorectomized DBA/2J mice and C57/EL hybrid mice. Hom, A.C., Leppik, I.E., Rask, C.A. Neurology (1993) [Pubmed]
  29. Enhanced aspartate release related to epilepsy in (EL) mice. Flavin, H.J., Seyfried, T.N. J. Neurochem. (1994) [Pubmed]
  30. Effect of convulsions of the synthesis of heterogeneous nuclear RNA associated with polyadenylate and oligoadenylate sequences from El mouse brain as a convulsive strain. Onishi, H., Yamagami, S., Mori, K., Kawakita, Y. Exp. Neurol. (1984) [Pubmed]
  31. Modulation of seizure susceptibility in the mouse by the strychnine-insensitive glycine recognition site of the NMDA receptor/ion channel complex. Singh, L., Oles, R.J., Tricklebank, M.D. Br. J. Pharmacol. (1990) [Pubmed]
  32. Kindling susceptibility and genetic seizure predisposition in inbred mice. Green, R.C., Seyfried, T.N. Epilepsia (1991) [Pubmed]
  33. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor alpha 2. Nanobashvili, A., Airaksinen, M.S., Kokaia, M., Rossi, J., Asztély, F., Olofsdotter, K., Mohapel, P., Saarma, M., Lindvall, O., Kokaia, Z. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  34. Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. Lähteinen, S., Pitkänen, A., Knuuttila, J., Törönen, P., Castrén, E. Eur. J. Neurosci. (2004) [Pubmed]
  35. Involvement of Scn1b and Kcna1 ion channels in audiogenic seizures and PTZ-induced epilepsy. Li, X., Yang, Q., Kuang, H., Jiang, N., Hu, Y. Epilepsy Res. (2005) [Pubmed]
  36. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. Gouder, N., Scheurer, L., Fritschy, J.M., Boison, D. J. Neurosci. (2004) [Pubmed]
  37. Increased expression of 3-hydroxyanthranilate 3,4-dioxygenase gene in brain of epilepsy-prone El mice. Nakagawa, Y., Asai, H., Miura, T., Kitoh, J., Mori, H., Nakano, K. Brain Res. Mol. Brain Res. (1998) [Pubmed]
  38. Congenic strains reveal effects of the epilepsy quantitative trait locus, El2, separate from other El loci. Frankel, W.N., Johnson, E.W., Lutz, C.M. Mamm. Genome (1995) [Pubmed]
  39. Mouse models of spike-wave epilepsy. Barclay, J., Rees, M. Epilepsia (1999) [Pubmed]
  40. The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca(2+) channel alpha(1A) subunit gene and exhibits absence seizures. Tokuda, S., Kuramoto, T., Tanaka, K., Kaneko, S., Takeuchi, I.K., Sasa, M., Serikawa, T. Brain Res. (2007) [Pubmed]
  41. Detecting genes in new and old mouse models for epilepsy: a prospectus through the magnifying glass. Frankel, W.N. Epilepsy Res. (1999) [Pubmed]
  42. Release of zinc from the brain of El (epilepsy) mice during seizure induction. Takeda, A., Hanajima, T., Ijiro, H., Ishige, A., Iizuka, S., Okada, S., Oku, N. Brain Res. (1999) [Pubmed]
 
WikiGenes - Universities