The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transient inactivation of phosphatidylethanolamine N-methyltransferase-2 and activation of cytidine triphosphate: phosphocholine cytidylyltransferase during non-neoplastic liver growth.

Phosphatidylethanolamine N-methyltransferase-2 (PEMT2) may contribute to the control of hepatocyte cell division, since its inactivation is associated with several types of liver proliferation including tumorigenesis [Cui, Houweling and Vance (1994) J. Biol. Chem. 269, 24531-24533]. To determine if the inactivation of PEMT2 was involved in non-neoplastic proliferation of hepatocytes, we studied the expression of this enzyme in a model of lead nitrate-induced liver proliferation in vivo in rats. A maximal decrease in PEMT activity (60%) and loss of PEMT2 protein (95%) coincided with maximal DNA synthesis and maximal cytidine triphosphate:phosphocholine cytidylyltransferase activity 36 h and 48 h after lead nitrate stimulation in male and female livers respectively. The decrease in expression of PEMT2 corresponded to a decrease in its mRNA. Compared with males, female rats exhibited a 12 h delay in the peak of DNA synthesis, in cytidylyltransferase activity and in the minimum of PEMT2 expression. Supplementation of the rats with dietary choline shifted the female pattern of PEMT2 inactivation, DNA synthesis and activation of cytidylyltransferase to 12 h earlier so that it was similar to the time frame of the expression of these activities in males. These results are consistent with the proposal that the inactivation of PEMT2 may have a role in the regulation of non-neoplastic growth of liver.[1]

References

 
WikiGenes - Universities