Body composition analysis by DEXA by using dynamically changing samarium filtration.
Dual-energy X-ray absorptiometry (DEXA) has a high accuracy for body composition analysis but is influenced by beam hardening and other error sources in the extremes of measurement. To compensate for beam hardening, the Norland XR-36 introduces a dynamically changing samarium filtration system, which depends on the current-absorber thickness. With this system we found a good agreement (r = 0.99) between reference and measured amounts of tissue or fat percentages in a plastic phantom and in smaller (approximately 0.5-4 kg) and larger (approximately 5-20 kg) piles of tissue (ox muscle and lard). Scans of six healthy volunteers covered with combinations of beef and lard (approximately 5-15 kg) showed a good agreement (r = 0.99) between reference and DEXA values of added soft tissue mass and fat percentage. We conclude that the DEXA method (and, in particular, the Norland XR-36 using dynamic filtration) has a high accuracy for body composition analysis. It has a potential for gaining status as a reference method in the future and may presently be used as a supplement to the traditional methods for body composition analysis.[1]References
- Body composition analysis by DEXA by using dynamically changing samarium filtration. Gotfredsen, A., Baeksgaard, L., Hilsted, J. J. Appl. Physiol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg