The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxygenation of 5,8,11-eicosatrienoic acid by prostaglandin H synthase-2 of ovine placental cotyledons: isolation of 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids.

Prostaglandin H synthase-1 of ram vesicular glands metabolises 5,8,11-eicosatrienoic (Mead) acid to 13R-hydroxy-5,8,11-eicosatrienoic and to 11R-hydroxy-5,8,12-eicosatrienoic in a 5:1 ratio. We wanted to determine the metabolism of this fatty acid by prostaglandin H synthase-2. Western blot showed that microsomes of sheep and rabbit placental cotyledons contained prostaglandin H synthase-2, while prostaglandin H synthase-1 could not be detected. Microsomes of sheep cotyledons metabolised [1-14C]5,8,11-eicosatrienoic acid to many polar metabolites and diclofenac (0.05 mM) inhibited the biosynthesis. The two major metabolites were identified as 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids. They were formed in a ratio of 3:2, which was not changed by aspirin (2 mM). 5,8,11-Eicosatrienoic acid is likely oxygenated by removal of the pro-S hydrogen at C-13 and insertion of molecular oxygen at either C-13 or C-11, which is followed by reduction of the peroxy derivatives to 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids, respectively. Prostaglandin H synthase-1 and -2 oxygenate 5,8,11-eicosatrienoic acid only slowly compared with arachidonic acid.[1]

References

 
WikiGenes - Universities