The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley.

Fungal elicitor stimulates a multicomponent defense response in cultured parsley cells (Petroselinum crispum). Early elements of this receptor-mediated response are ion fluxes across the plasma membrane and the production of reactive oxygen species (ROS), sequentially followed by defense gene activation and phytoalexin accumulation. Omission of Ca2+ from the culture medium or inhibition of elicitor-stimulated ion fluxes by ion channel blockers prevented the latter three reactions, all of which were triggered in the absence of elicitor by amphotericin B-induced ion fluxes. Inhibition of elicitor-stimulated ROS production using diphenylene iodonium blocked defense gene activation and phytoalexin accumulation. O2- but not H2O2 stimulated phytoalexin accumulation, without inducing proton fluxes. These results demonstrate a causal relationship between early and late reactions of parsley cells to the elicitor and indicate a sequence of signaling events from receptor-mediated activation of ion channels via ROS production and defense gene activation to phytoalexin synthesis. Within this sequence, O2- rather than H2O2 appears to trigger the subsequent reactions.[1]

References

 
WikiGenes - Universities