The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Gene Expression Regulation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gene Expression Regulation


Psychiatry related information on Gene Expression Regulation


High impact information on Gene Expression Regulation


Chemical compound and disease context of Gene Expression Regulation


Biological context of Gene Expression Regulation


Anatomical context of Gene Expression Regulation


Associations of Gene Expression Regulation with chemical compounds


Gene context of Gene Expression Regulation

  • These studies thus define diverse cofactor functions, as well as underlying mechanisms involving distinct histone modifications, in p53-dependent gene activation [35].
  • Very large portions of GAL4 are not required for gene activation [36].
  • Our findings suggest that Gdf1 acts early in the pathway of gene activation that leads to the establishment of left-right asymmetry [37].
  • Gene activation and DNA binding by Drosophila Ubx and abd-A proteins [38].
  • From these observations and further analyses of GAL11, we propose that a single activator-holoenzyme contact can trigger gene activation simply by recruiting the latter to DNA [39].

Analytical, diagnostic and therapeutic context of Gene Expression Regulation


  1. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Aszterbaum, M., Epstein, J., Oro, A., Douglas, V., LeBoit, P.E., Scott, M.P., Epstein, E.H. Nat. Med. (1999) [Pubmed]
  2. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Rendahl, K.G., Leff, S.E., Otten, G.R., Spratt, S.K., Bohl, D., Van Roey, M., Donahue, B.A., Cohen, L.K., Mandel, R.J., Danos, O., Snyder, R.O. Nat. Biotechnol. (1998) [Pubmed]
  3. Artificial regulation of gene expression in Escherichia coli by RNase P. Guerrier-Takada, C., Li, Y., Altman, S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  4. From the Cover: Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Laganière, J., Deblois, G., Lefebvre, C., Bataille, A.R., Robert, F., Giguère, V. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  5. Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Dedhar, S., Gaboury, L., Galloway, P., Eaves, C. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  6. Myelin gene activation: a glucose sensitive critical period in development. Royland, J.E., Konat, G.W., Wiggins, R.C. J. Neurosci. Res. (1993) [Pubmed]
  7. The effects of antidepressant drug treatments on activator protein-1 binding activity in the rat brain. Tamura, T., Morinobu, S., Okamoto, Y., Kagaya, A., Yamawaki, S. Prog. Neuropsychopharmacol. Biol. Psychiatry (2002) [Pubmed]
  8. Regulation of gene expression by dopamine: implications in drug addiction. Conneely, O.M., Power, R.F., O'Malley, B.W. NIDA Res. Monogr. (1992) [Pubmed]
  9. The molecular basis of intellectual disability: novel genes with naturally occurring mutations causing altered gene expression in the brain. Gécz, J. Front. Biosci. (2004) [Pubmed]
  10. The bare lymphocyte syndrome and the regulation of MHC expression. Reith, W., Mach, B. Annu. Rev. Immunol. (2001) [Pubmed]
  11. Calcium signaling mechanisms in T lymphocytes. Lewis, R.S. Annu. Rev. Immunol. (2001) [Pubmed]
  12. The NF-kappa B and I kappa B proteins: new discoveries and insights. Baldwin, A.S. Annu. Rev. Immunol. (1996) [Pubmed]
  13. Evidence for an instructive mechanism of de novo methylation in cancer cells. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R.A., Niveleau, A., Cedar, H., Simon, I. Nat. Genet. (2006) [Pubmed]
  14. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Zhang, H., Roberts, D.N., Cairns, B.R. Cell (2005) [Pubmed]
  15. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. Suttner, D.M., Dennery, P.A. FASEB J. (1999) [Pubmed]
  16. Fetal hemoglobin gene activation in a phase II study of 5,6-dihydro-5-azacytidine for bronchogenic carcinoma. Carr, B.I., Rahbar, S., Doroshow, J.H., Blayney, D., Goldberg, D., Leong, L., Asmeron, Y. Cancer Res. (1987) [Pubmed]
  17. Sequential alterations in globin gene chromatin structure during erythroleukemia cell differentiation. Yu, J., Smith, R.D. J. Biol. Chem. (1985) [Pubmed]
  18. The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. Wood, S.M., Gleadle, J.M., Pugh, C.W., Hankinson, O., Ratcliffe, P.J. J. Biol. Chem. (1996) [Pubmed]
  19. Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Desai, K.V., Michalowska, A.M., Kondaiah, P., Ward, J.M., Shih, J.H., Green, J.E. Mol. Endocrinol. (2004) [Pubmed]
  20. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Fujita, N., Jaye, D.L., Kajita, M., Geigerman, C., Moreno, C.S., Wade, P.A. Cell (2003) [Pubmed]
  21. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Jackson-Grusby, L., Beard, C., Possemato, R., Tudor, M., Fambrough, D., Csankovszki, G., Dausman, J., Lee, P., Wilson, C., Lander, E., Jaenisch, R. Nat. Genet. (2001) [Pubmed]
  22. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cai, M., Davis, R.W. Cell (1990) [Pubmed]
  23. RNA helicase A mediates association of CBP with RNA polymerase II. Nakajima, T., Uchida, C., Anderson, S.F., Lee, C.G., Hurwitz, J., Parvin, J.D., Montminy, M. Cell (1997) [Pubmed]
  24. Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun. Bohmann, D., Tjian, R. Cell (1989) [Pubmed]
  25. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Chen, R.Z., Akbarian, S., Tudor, M., Jaenisch, R. Nat. Genet. (2001) [Pubmed]
  26. Altered expression of the calcitonin gene associated with RNA polymorphism. Rosenfeld, M.G., Amara, S.G., Roos, B.A., Ong, E.S., Evans, R.M. Nature (1981) [Pubmed]
  27. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Mangalam, H.J., Albert, V.R., Ingraham, H.A., Kapiloff, M., Wilson, L., Nelson, C., Elsholtz, H., Rosenfeld, M.G. Genes Dev. (1989) [Pubmed]
  28. Sensitization of IFN-gamma Jak-STAT signaling during macrophage activation. Hu, X., Herrero, C., Li, W.P., Antoniv, T.T., Falck-Pedersen, E., Koch, A.E., Woods, J.M., Haines, G.K., Ivashkiv, L.B. Nat. Immunol. (2002) [Pubmed]
  29. Arginine methylation regulates the cytokine response. Boisvert, F.M., Richard, S. Mol. Cell (2004) [Pubmed]
  30. Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Danielsen, M., Hinck, L., Ringold, G.M. Cell (1989) [Pubmed]
  31. The viral erbA oncogene protein, a constitutive repressor in animal cells, is a hormone-regulated activator in yeast. Privalsky, M.L., Sharif, M., Yamamoto, K.R. Cell (1990) [Pubmed]
  32. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Karkkainen, M.J., Ferrell, R.E., Lawrence, E.C., Kimak, M.A., Levinson, K.L., McTigue, M.A., Alitalo, K., Finegold, D.N. Nat. Genet. (2000) [Pubmed]
  33. Hormonal regulation of plasminogen activator mRNA production in porcine kidney cells. Nagamine, Y., Sudol, M., Reich, E. Cell (1983) [Pubmed]
  34. 5-Azacytidine permits gene activation in a previously noninducible cell type. Chiu, C.P., Blau, H.M. Cell (1985) [Pubmed]
  35. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. An, W., Kim, J., Roeder, R.G. Cell (2004) [Pubmed]
  36. Deletion analysis of GAL4 defines two transcriptional activating segments. Ma, J., Ptashne, M. Cell (1987) [Pubmed]
  37. Regulation of left-right patterning in mice by growth/differentiation factor-1. Rankin, C.T., Bunton, T., Lawler, A.M., Lee, S.J. Nat. Genet. (2000) [Pubmed]
  38. Gene activation and DNA binding by Drosophila Ubx and abd-A proteins. Samson, M.L., Jackson-Grusby, L., Brent, R. Cell (1989) [Pubmed]
  39. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Barberis, A., Pearlberg, J., Simkovich, N., Farrell, S., Reinagel, P., Bamdad, C., Sigal, G., Ptashne, M. Cell (1995) [Pubmed]
  40. Silencing the expression of multiple Gbeta-subunits eliminates signaling mediated by all four families of G proteins. Hwang, J.I., Choi, S., Fraser, I.D., Chang, M.S., Simon, M.I. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  41. Inhibition of IFN-alpha signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Du, Z., Shen, Y., Yang, W., Mecklenbrauker, I., Neel, B.G., Ivashkiv, L.B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  42. p53-dependent induction of WAF1 by a low-pH culture condition in human glioblastoma cells. Ohtsubo, T., Wang, X., Takahashi, A., Ohnishi, K., Saito, H., Song, C.W., Ohnishi, T. Cancer Res. (1997) [Pubmed]
  43. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Worrad, D.M., Turner, B.M., Schultz, R.M. Development (1995) [Pubmed]
  44. DNA elements responsive to auxin. Abel, S., Ballas, N., Wong, L.M., Theologis, A. Bioessays (1996) [Pubmed]
WikiGenes - Universities