The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation.

Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor ( mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1-2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.[1]

References

  1. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Weiler, I.J., Irwin, S.A., Klintsova, A.Y., Spencer, C.M., Brazelton, A.D., Miyashiro, K., Comery, T.A., Patel, B., Eberwine, J., Greenough, W.T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
 
WikiGenes - Universities