The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase.

Oxidative DNA damage is generated by reactive oxygen species. The mutagenic base, 8-oxoguanine, formed by this process, is removed from oxidatively damaged DNA by base excision repair. Genes coding for DNA repair enzymes that recognize 8-oxoguanine have been reported in bacteria and yeast. We have identified and characterized mouse and human cDNAs encoding homologs of the 8-oxoguanine DNA glycosylase (ogg1) gene of Saccharomyces cerevisiae. Escherichia coli doubly mutant for mutM and mutY have a mutator phenotype and are deficient in 8-oxoguanine repair. The recombinant mouse gene (mOgg1) suppresses the mutator phenotype of mutY/ mutM E. coli. Extracts prepared from mutY/mutM E. coli expressing mOgg1 contain an activity that excises 8-oxoguanine from DNA and a beta-lyase activity that nicks DNA 3' to the lesion. The mouse ogg1 gene product acts efficiently on DNA duplexes in which 7, 8-dihydroxy-8-oxo-2'-deoxyguanosine (8-oxodG) is paired with dC, acts weakly on duplexes in which 8-oxodG is paired with dT or dG, and is inactive against duplexes in which 8-oxodG is paired with dA. Mouse and human ogg1 genes contain a helix-hairpin-helix structural motif with conserved residues characteristic of a recently defined family of DNA glycosylases. Ogg1 mRNA is expressed in several mouse tissues; highest levels were detected in testes. Isolation of the mouse ogg1 gene makes it possible to modulate its expression in mice and to explore the involvement of oxidative DNA damage and associated repair processes in aging and cancer.[1]

References

  1. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Rosenquist, T.A., Zharkov, D.O., Grollman, A.P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
 
WikiGenes - Universities