The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Selective changes in cell bodies and growth cones of nerve growth factor-differentiated PC12 cells induced by chemical hypoxia.

Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in differentiated PC12 cells to test whether chemical hypoxia selectively alters intracellular Ca2+ in growth cones and cell bodies. Hypoxia increased [Ca2+]i and exaggerated its response to K+ depolarization in both parts of the cells. [Ca2+]i in the cell bodies was greater than that in the growth cones under resting conditions and in response to K+ or hypoxia. Ca2+-channel blockers selectively altered these responses. The L-channel blocker nifedipine reduced [Ca2+]i following K+ depolarization by 67% in the cell bodies but only 25% in the growth cones. In contrast, the N-channel blocker omega-conotoxin GVIA (omega-CgTX) diminished K+-induced changes in [Ca2+]i only in the growth cones. During hypoxia, nifedipine was more effective in the cell bodies than in the growth cones. During hypoxia, omega-CgTX diminished K+-induced changes by 50-75% in both parts of the cell, but only immediately after depolarization. The combination of nifedipine and omega-CgTX diminished the [Ca2+]i response to K+ with or without hypoxia by >90% in the cell body and 70% in the growth cones. Thus, the increased Ca2+ entry with K+ during hypoxia is primarily through L channels in the cell bodies, whereas in growth cones influx through L and N channels is about equal. The results show that chemical hypoxia selectively alters Ca2+ regulation in the growth cone and cell body of the same cell.[1]

References

 
WikiGenes - Universities