The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Interactions of amphetamine analogs with human liver CYP2D6.

The interaction of fifteen amphetamine analogs with the genetically polymorphic enzyme CYP2D6 was examined. All fourteen phenylisopropylamines tested were competitive inhibitors of CYP2D6 in human liver microsomes. The presence of a methylenedioxy group in the 3,4-positions of both amphetamine (Ki = 26.5 microM) and methamphetamine (Ki = 25 microM) increased the affinity for CYP2D6 to 1.8 and 0.6 microM, respectively. Addition of a methoxy group to amphetamine in the 2-position also increased the affinity for CYP2D6 (Ki = 11.5 microM). The compound with the highest affinity for CYP2D6 was an amphetamine analog (MMDA-2) having both a methoxy group in the 2-position and a methylenedioxy group (Ki = 0.17 microM). Mescaline did not interact with CYP2D6. O-Demethylation of p-methoxyamphetamine (PMA) by CYP2D6 was characterized (Km = 59.2 +/- 22.4 microM, and Vmax = 29.3 +/- 16.6 nmol/mg/hr, N = 6 livers). This reaction was negligible in CYP2D6-deficient liver microsomes, was inhibited stereoselectively by the quinidine/quinine enantiomer pair, and was cosegregated with dextromethorphan O-demethylation (r = 0.975). The inhibitory effect of methylenedioxymethamphetamine (MDMA) was enhanced by preincubation with microsomes, suggesting that MDMA may produce a metabolite complex with CYP2D6. These findings suggest that phenylisopropylamines as a class interact with CYP2D6 as substrates and/or inhibitors. Their use may cause metabolic interactions with other drugs that are CYP2D6 substrates, and the potential for polymorphic oxidation via CYP2D6 may be a source of interindividual variation in their abuse liability and toxicity.[1]

References

  1. Interactions of amphetamine analogs with human liver CYP2D6. Wu, D., Otton, S.V., Inaba, T., Kalow, W., Sellers, E.M. Biochem. Pharmacol. (1997) [Pubmed]
 
WikiGenes - Universities