The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

DNA damage inhibits proteolysis of the B-type cyclin Clb5 in S. cerevisiae.

Cell cycle progression is mediated by waves of specific cyclin dependent kinases (CDKs) in all eukaryotes. Cyclins are degraded by the ubiquitin pathway of proteolysis. The recent identification of several components of the cyclin proteolysis machinery has highlighted both the importance of proteolysis at multiple transition points in the cell cycle and the involvement of other substrates degraded by the same machinery. In this study, we have investigated the effects of DNA damage on the cyclin proteolytic machinery in Saccharomyces cerevisiae. We find that the half-life of the B-type cyclin Clb5 is markedly increased following DNA damage while that of G1 cyclins is not. This effect is independent of cell cycle phase. Clb5 turnover requires p34CDC28 activity. Stabilisation of Clb5 correlates with an increase in tyrosine phosphorylation of p34CDC28, but stabilisation does not require this tyrosine phosphorylation. The stabilisation is independent of the checkpoint genes Mec1 and Rad53. These observations establish a new link between the regulation of proteolysis and DNA damage.[1]

References

  1. DNA damage inhibits proteolysis of the B-type cyclin Clb5 in S. cerevisiae. Germain, D., Hendley, J., Futcher, B. J. Cell. Sci. (1997) [Pubmed]
 
WikiGenes - Universities