The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Visualization of clinical data with neural networks, case study: polycystic ovary syndrome.

In medicine, the use of neural networks has concentrated mainly on classification problems. Clinicians are often interested in knowing what a patient's status is compared with other similar cases. Compared with biostatistics neural networks have one major drawback: the reliability of the classification is difficult to express. Therefore, clear visualization of the measurements can be more helpful than the calculated probability of a disease. The self-organizing map is the most widely used neural network for data visualization. Although, visualization can be attached to almost any feed-forward network as well. In this paper, we describe a topology-preserving feed-forward network and compare it with the self-organizing map. The two neural network models are used in a case study on the diagnosis of polycystic ovary syndrome, which is a common female endocrine disorder characterized by menstrual abnormalities, hirsutism and infertility.[1]

References

  1. Visualization of clinical data with neural networks, case study: polycystic ovary syndrome. Lehtinen, J.C., Forsström, J., Koskinen, P., Penttilä, T.A., Järvi, T., Anttila, L. International journal of medical informatics. (1997) [Pubmed]
 
WikiGenes - Universities