Lactose repressor protein: functional properties and structure.
The lactose repressor protein (LacI), the prototype for genetic regulatory proteins, controls expression of lactose metabolic genes by binding to its cognate operator sequences in E. coli DNA. Inducer binding elicits a conformational change that diminishes affinity for operator sequences with no effect on nonspecific binding. The release of operator is followed by synthesis of mRNA encoding the enzymes for lactose utilization. Genetic, chemical and physical studies provided detailed insight into the function of this protein prior to the recent completion of X-ray crystallographic structures. The structural information can now be correlated with the phenotypic data for numerous mutants. These structures also provide the opportunity for physical and chemical studies on mutants designed to examine various aspects of lac repressor structure and function. In addition to providing insight into protein structure-function correlations, LacI has been utilized in a wide variety of applications both in prokaryotic gene expression and in eukaryotic gene regulation and studies of mutagenesis.[1]References
- Lactose repressor protein: functional properties and structure. Matthews, K.S., Nichols, J.C. Prog. Nucleic Acid Res. Mol. Biol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg