Human liver CYP2B6-catalyzed hydroxylation of RP 73401.
RP 73401 is a potent inhibitor of cyclic nucleotide phosphodiesterase type IV. RP 73401 is metabolized by human liver microsomes almost exclusively by transhydroxylation of the cyclopentyl group to RPR 113406. Liquid chromatography/ mass spectrometry/ mass spectrometry analysis of plasma from patients given RP 73401 also revealed a molecular ion and fragmentation consistent with RPR 113406. Thus, the objective was to determine the oxidative enzyme(s) responsible for RP 73401 hydroxylation. Kinetic constants of RP 113406 formation ranged from 8 to 26 MM and 0.83 to 5.99 nmol/min/mg protein for K(m) and V(max), respectively (n = 3). Enzyme activity varied 23-fold among 15 human liver microsome samples and correlated with CYP2A6-catalyzed coumarin hydroxylase (r2 = 0.85, P < .01) and CYP2B6-catalyzed 7-ethoxytrifluoromethylcoumarin O-deethylase (r2 = 0.82, P < .01) activities. Chemical inhibition studies showed a 63% decrease in RP 73401 hydroxylation by 500 microM orphenadrine. Coumarin (10 microM), however, did not inhibit RP 73401 hydroxylation. Also, anti-CYP2B1 IgG produced 85% inhibition of RP 73401 hydroxylation, but only a negligible decline in coumarin hydroxylase activity. Of the 10 expressed P450 forms studied, only CYP2B6 catalyzed RP 73401 hydroxylation. Finally, expressed CYP2B6 showed a high affinity (K(m) = 22.5 microM) for RP 73401 hydroxylation, similar to the human liver microsome studies.[1]References
- Human liver CYP2B6-catalyzed hydroxylation of RP 73401. Stevens, J.C., White, R.B., Hsu, S.H., Martinet, M. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg