The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mechanical responses of the mammalian cochlea.

Recent findings in auditory research have significantly changed our views of the processes involved in hearing. Novel techniques and new approaches to investigate the mammalian cochlea have expanded our knowledge about the mechanical events occurring at physiologically relevant stimulus intensities. Experiments performed in the apical, low-frequency regions demonstrate that although there is a change in the mechanical responses along the cochlea, the fundamental characteristics are similar across the frequency range. The mechanical responses to sound stimulation exhibit tuning properties comparable to those measured intracellularly or from nerve fibres. Non-linearities in the mechanical responses have now clearly been observed at all cochlear locations. The mechanics of the cochlea are vulnerable, and dramatic changes are seen especially when the sensory hair cells are affected, for example, following acoustic overstimulation or exposure to ototoxic compounds such as furosemide. The results suggest that there is a sharply tuned and vulnerable response related to the hair cells, superimposed on a more robust, broadly tuned response. Studies of the micromechanical behaviour down to the cellular level have demonstrated significant differences radially across the hearing organ and have provided new information on the important mechanical interactions with the tectorial membrane. There is now ample evidence of reverse transduction in the auditory periphery, i.e. the cochlea does not only receive and detect mechanical stimuli but can itself produce mechanical motion. Hence, it has been shown that electrical stimulation elicits motion within the cochlea very similar to that evoked by sound. In addition, the presence of acoustically-evoked displacements of the hearing organ have now been demonstrated by several laboratories.[1]


  1. Mechanical responses of the mammalian cochlea. Ulfendahl, M. Prog. Neurobiol. (1997) [Pubmed]
WikiGenes - Universities