The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Hair Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hair Cells


High impact information on Hair Cells

  • In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer [6].
  • Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function [7].
  • Tmc1 mRNA is expressed in hair cells of the postnatal mouse cochlea and vestibular end organs and is required for normal function of cochlear hair cells [7].
  • We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes [8].
  • Cochlear hair cells in the av mutants show abnormal stereocilia by 10 days after birth (P10) [9].

Chemical compound and disease context of Hair Cells


Biological context of Hair Cells


Anatomical context of Hair Cells


Associations of Hair Cells with chemical compounds


Gene context of Hair Cells


Analytical, diagnostic and therapeutic context of Hair Cells


  1. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Ehrhardt, D.W., Atkinson, E.M., Long, S.R. Science (1992) [Pubmed]
  2. Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Zhang, M., Liu, W., Ding, D., Salvi, R. Neuroscience (2003) [Pubmed]
  3. Spatio-temporal diversity in the microenvironments for neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule expression by sensory neurons and their targets during cochleo-vestibular innervation. Hrynkow, S.H., Morest, D.K., Brumwell, C., Rutishauser, U. Neuroscience (1998) [Pubmed]
  4. Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases. Bonny, C., Borsello, T., Zine, A. Reviews in the neurosciences. (2005) [Pubmed]
  5. Vergence-mediated modulation of the human horizontal vestibulo-ocular reflex is eliminated by a partial peripheral gentamicin lesion. Migliaccio, A.A., Minor, L.B., Carey, J.P. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (2004) [Pubmed]
  6. Molecular basis of mechanotransduction in living cells. Hamill, O.P., Martinac, B. Physiol. Rev. (2001) [Pubmed]
  7. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Kurima, K., Peters, L.M., Yang, Y., Riazuddin, S., Ahmed, Z.M., Naz, S., Arnaud, D., Drury, S., Mo, J., Makishima, T., Ghosh, M., Menon, P.S., Deshmukh, D., Oddoux, C., Ostrer, H., Khan, S., Riazuddin, S., Deininger, P.L., Hampton, L.L., Sullivan, S.L., Battey, J.F., Keats, B.J., Wilcox, E.R., Friedman, T.B., Griffith, A.J. Nat. Genet. (2002) [Pubmed]
  8. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Di Palma, F., Holme, R.H., Bryda, E.C., Belyantseva, I.A., Pellegrino, R., Kachar, B., Steel, K.P., Noben-Trauth, K. Nat. Genet. (2001) [Pubmed]
  9. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Alagramam, K.N., Murcia, C.L., Kwon, H.Y., Pawlowski, K.S., Wright, C.G., Woychik, R.P. Nat. Genet. (2001) [Pubmed]
  10. AMPA-type glutamate receptor subunits are expressed in the avian cochlear hair cells and ganglion cells. Reng, D., Hack, I., Müller, M., Smolders, J.W. Neuroreport (1999) [Pubmed]
  11. Replacement of mammalian auditory hair cells. Zine, A., de Ribaupierre, F. Neuroreport (1998) [Pubmed]
  12. Dizocilpine attenuates streptomycin-induced vestibulotoxicity in rats. Basile, A.S., Brichta, A.M., Harris, B.D., Morse, D., Coling, D., Skolnick, P. Neurosci. Lett. (1999) [Pubmed]
  13. Immunocytochemical study of the GABA system in chicken vestibular endorgans and the vestibular ganglion. Usami, S., Hozawa, J., Tazawa, M., Igarashi, M., Thompson, G.C., Wu, J.Y., Wenthold, R.J. Brain Res. (1989) [Pubmed]
  14. Glutamate neurotoxicity in the developing rat cochlea is antagonized by kynurenic acid and MK-801. Janssen, R. Brain Res. (1992) [Pubmed]
  15. Retinoic acid stimulates regeneration of mammalian auditory hair cells. Lefebvre, P.P., Malgrange, B., Staecker, H., Moonen, G., Van de Water, T.R. Science (1993) [Pubmed]
  16. A developmental conundrum: a stabilized form of beta-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. DasGupta, R., Rhee, H., Fuchs, E. J. Cell Biol. (2002) [Pubmed]
  17. Visualization of alpha9 acetylcholine receptor expression in hair cells of transgenic mice containing a modified bacterial artificial chromosome. Zuo, J., Treadaway, J., Buckner, T.W., Fritzsch, B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. Oberholtzer, J.C., Buettger, C., Summers, M.C., Matschinsky, F.M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  19. A specific promoter of the sensory cells of the inner ear defined by transgenesis. Boëda, B., Weil, D., Petit, C. Hum. Mol. Genet. (2001) [Pubmed]
  20. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Verpy, E., Leibovici, M., Zwaenepoel, I., Liu, X.Z., Gal, A., Salem, N., Mansour, A., Blanchard, S., Kobayashi, I., Keats, B.J., Slim, R., Petit, C. Nat. Genet. (2000) [Pubmed]
  21. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Street, V.A., McKee-Johnson, J.W., Fonseca, R.C., Tempel, B.L., Noben-Trauth, K. Nat. Genet. (1998) [Pubmed]
  22. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Verhoeven, K., Van Laer, L., Kirschhofer, K., Legan, P.K., Hughes, D.C., Schatteman, I., Verstreken, M., Van Hauwe, P., Coucke, P., Chen, A., Smith, R.J., Somers, T., Offeciers, F.E., Van de Heyning, P., Richardson, G.P., Wachtler, F., Kimberling, W.J., Willems, P.J., Govaerts, P.J., Van Camp, G. Nat. Genet. (1998) [Pubmed]
  23. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S. Cell (1994) [Pubmed]
  24. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Littlewood Evans, A., Müller, U. Nat. Genet. (2000) [Pubmed]
  25. Proliferation in the auditory receptor epithelium mediated by a cyclic AMP-dependent signaling pathway. Navaratnam, D.S., Su, H.S., Scott, S.P., Oberholtzer, J.C. Nat. Med. (1996) [Pubmed]
  26. Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Tucker, T., Fettiplace, R. Neuron (1995) [Pubmed]
  27. Notch signalling pathway mediates hair cell development in mammalian cochlea. Lanford, P.J., Lan, Y., Jiang, R., Lindsell, C., Weinmaster, G., Gridley, T., Kelley, M.W. Nat. Genet. (1999) [Pubmed]
  28. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Kros, C.J., Marcotti, W., van Netten, S.M., Self, T.J., Libby, R.T., Brown, S.D., Richardson, G.P., Steel, K.P. Nat. Neurosci. (2002) [Pubmed]
  29. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Woods, C., Montcouquiol, M., Kelley, M.W. Nat. Neurosci. (2004) [Pubmed]
  30. A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Longo-Guess, C.M., Gagnon, L.H., Cook, S.A., Wu, J., Zheng, Q.Y., Johnson, K.R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  31. Identification of a 275-kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. Richardson, G.P., Bartolami, S., Russell, I.J. J. Cell Biol. (1990) [Pubmed]
  32. Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Corwin, J.T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  33. Hes1 is a negative regulator of inner ear hair cell differentiation. Zheng, J.L., Shou, J., Guillemot, F., Kageyama, R., Gao, W.Q. Development (2000) [Pubmed]
  34. Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. Zheng, J.L., Gao, W.Q. J. Neurosci. (1997) [Pubmed]
WikiGenes - Universities