The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The C-terminal domain of B-Myb acts as a positive regulator of transcription and modulates its biological functions.

The myb gene family consists of three members, named A-, B-, and c-myb. All three members of this family encode nuclear proteins that bind DNA in a sequence-specific manner and function as regulators of transcription. In this report, we have examined the biochemical and biological activities of murine B-myb and compared these properties with those of murine c-myb. In transient transactivation assays, murine B-myb exhibited transactivation potential comparable to that of c-myb. An analysis of deletion mutants of B-myb and c-myb showed that while the C-terminal domain of c-Myb acts as a negative regulator of transcriptional transactivation, the C-terminal domain of B-Myb functions as a positive enhancer of transactivation. To compare the biological activities of c-myb and B-myb, the two genes were overexpressed in 32Dcl3 cells, which are known to undergo terminal differentiation into granulocytes in the presence of granulocyte colony-stimulating factor (G-CSF). We observed that c-myb blocked the G-CSF-induced terminal differentiation of 32Dcl3 cells, resulting in their continued proliferation in the presence of G-CSF. In contrast, ectopic overexpression of B-myb blocked the ability of 32D cells to proliferate in the presence of G-CSF and accelerated the G-CSF-induced granulocytic differentiation of these cells. Similar studies with B-myb-c-myb chimeras showed that only chimeras that contained the C-terminal domain of B-Myb were able to accelerate the G-CSF-induced terminal differentiation of 32Dcl3 cells. These studies show that c-myb and B-myb do not exhibit identical biological activities and that the carboxyl-terminal regulatory domain of B-Myb plays a critical role in its biological function.[1]

References

 
WikiGenes - Universities