The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of [gamma-3H]aminobutyric acid transport by Ca2+ in isolated synaptic plasma membrane vesicles.

We studied the effect of Ca2+ on the transport of the gamma-aminobutyric acid (GABA) by synaptic plasma membrane (SPM) vesicles isolated from sheep brain cortex and observed that intravesicular Ca2+ inhibits the [3H]GABA accumulation in a concentration-dependent manner. This inhibitory effect of Ca2+ exhibited two distinct components: one in the micromolar range of Ca2+ concentration, and the other in the millimolar range. Previous EGTA washing of the membranes, or incorporation of trifluoperazine into the vesicular space reduced the inhibitory action of Ca2+, particularly at low Ca2+ (1-5 microM). Okadaic acid (1 microM) also relieved the Ca2+ inhibition at low, but not at high Ca2+ concentrations (1 mM), whereas the calpain inhibitor I did not alter the effect of the low Ca2+, but it partially reduced (approximately 28%) the effect of Ca2+ in the millimolar range. The results indicate that the GABA transporter is regulated by low Ca2+ concentration (microM) and probably its effect is mediated by the (Ca2+ x calmodulin)-stimulated phosphatase 2B (calcineurin). In contrast, the GABA uptake inhibition observed at high Ca2+ concentrations (1 mM) is less specific, and probably it is partially related to the proteolytic activity of membrane bound calpain II.[1]

References

  1. Regulation of [gamma-3H]aminobutyric acid transport by Ca2+ in isolated synaptic plasma membrane vesicles. Gonçalves, P.P., Carvalho, A.P., Vale, M.G. Brain Res. Mol. Brain Res. (1997) [Pubmed]
 
WikiGenes - Universities