The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

UPCMLD-DP120     (2S)-2-[[(2S)-2-acetamido-4- methyl...

Synonyms: CHEMBL304784, CHEBI:2423, BSPBio_001559, KBioGR_000279, KBioSS_000279, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CALPAIN IHIBITOR I


High impact information on CALPAIN IHIBITOR I


Chemical compound and disease context of CALPAIN IHIBITOR I


Biological context of CALPAIN IHIBITOR I


Anatomical context of CALPAIN IHIBITOR I


Associations of CALPAIN IHIBITOR I with other chemical compounds

  • Findings were extended by showing treatment with ubiquitin-dependent proteasome inhibitors: calpain inhibitor I and lactacystin each prevented this decreased cyclin D1 protein expression, despite RA treatment [22].
  • Furthermore, pretreating platelets with the calpain inhibitors calpeptin and calpain inhibitor I prevented the calpain-mediated reduction in clot retraction [23].
  • Treatment of Chinese hamster ovary (CHO) cells by the aldehyde containing calpain inhibitor I resulted in the induction of a 35-kDa protein that was partially sequenced and shown to be a member of the aldo-keto reductase superfamily (Inoue, S., Sharma, R. C., Schimke, R. T., and Simoni, R. D. (1993) J. Biol. Chem. 268, 5894-5898) [24].
  • Furthermore, calpain inhibitor I reduced (1) the staining for nitrotyrosine and poly (ADP-ribose) polymerase (immunohistochemistry) and (2) the expression of inducible nitric oxide synthase and cyclooxygenase-2 in the lungs of carrageenan-treated rats and in joints from collagen-treated rats [25].
  • Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity [26].

Gene context of CALPAIN IHIBITOR I


Analytical, diagnostic and therapeutic context of CALPAIN IHIBITOR I


  1. Calpain inhibitor I reduces the activation of nuclear factor-kappaB and organ injury/dysfunction in hemorrhagic shock. McDonald, M.C., Mota-Filipe, H., Paul, A., Cuzzocrea, S., Abdelrahman, M., Harwood, S., Plevin, R., Chatterjee, P.K., Yaqoob, M.M., Thiemermann, C. FASEB J. (2001) [Pubmed]
  2. Calpain inhibitor I reduces colon injury caused by dinitrobenzene sulphonic acid in the rat. Cuzzocrea, S., McDonald, M.C., Mazzon, E., Mota-Filipe, H., Centorrino, T., Terranova, M.L., Ciccolo, A., Britti, D., Caputi, A.P., Thiemermann, C. Gut (2001) [Pubmed]
  3. Inhibition of ischemia-induced fodrin breakdown by a novel phenylpyrimidine derivative NS-7: an implication for its neuroprotective action in rats with middle cerebral artery occlusion. Takagaki, Y., Itoh, Y., Aoki, Y., Ukai, Y., Yoshikuni, Y., Kimura, K. J. Neurochem. (1997) [Pubmed]
  4. Cyclin D1 proteolysis: a retinoid chemoprevention signal in normal, immortalized, and transformed human bronchial epithelial cells. Boyle, J.O., Langenfeld, J., Lonardo, F., Sekula, D., Reczek, P., Rusch, V., Dawson, M.I., Dmitrovsky, E. J. Natl. Cancer Inst. (1999) [Pubmed]
  5. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. Shiraha, H., Glading, A., Gupta, K., Wells, A. J. Cell Biol. (1999) [Pubmed]
  6. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Lange, C.A., Shen, T., Horwitz, K.B. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. In vivo inhibition of cyclin B degradation and induction of cell-cycle arrest in mammalian cells by the neutral cysteine protease inhibitor N-acetylleucylleucylnorleucinal. Sherwood, S.W., Kung, A.L., Roitelman, J., Simoni, R.D., Schimke, R.T. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  8. Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. Su, Y., Block, E.R. Am. J. Physiol. Lung Cell Mol. Physiol. (2000) [Pubmed]
  9. Effect of calpain inhibitor I, an inhibitor of the proteolysis of I kappa B, on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Ruetten, H., Thiemermann, C. Br. J. Pharmacol. (1997) [Pubmed]
  10. Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Arai, A., Kessler, M., Lee, K., Lynch, G. Brain Res. (1990) [Pubmed]
  11. Adenine nucleotide and calpain inhibitor I protect against atractyloside-induced toxicity in rat renal cortical slices in vitro. Obatomi, D.K., Blackburn, R.O., Bach, P.H. Arch. Toxicol. (2001) [Pubmed]
  12. Increased gadd153 messenger RNA level is associated with apoptosis in human leukemic cells treated with etoposide. Eymin, B., Dubrez, L., Allouche, M., Solary, E. Cancer Res. (1997) [Pubmed]
  13. Reovirus-induced apoptosis is preceded by increased cellular calpain activity and is blocked by calpain inhibitors. Debiasi, R.L., Squier, M.K., Pike, B., Wynes, M., Dermody, T.S., Cohen, J.J., Tyler, K.L. J. Virol. (1999) [Pubmed]
  14. Kinetic characterization of the chymotryptic activity of the 20S proteasome. Stein, R.L., Melandri, F., Dick, L. Biochemistry (1996) [Pubmed]
  15. Effect and cellular site of action of cysteine protease inhibitors on the cholesterol esterification pathway in macrophages and Chinese hamster ovary cells. Schissel, S.L., Beatini, N., Zha, X., Maxfield, F.R., Tabas, I. Biochemistry (1995) [Pubmed]
  16. Effect of seizure activity and calpain inhibitor I on LTP in juvenile hippocampal slices. Fitzpatrick, J.S., Shahi, K., Baudry, M. Int. J. Dev. Neurosci. (1992) [Pubmed]
  17. Calpain inhibitors confer biochemical, but not electrophysiological, protection against anoxia in rat optic nerves. Jiang, Q., Stys, P.K. J. Neurochem. (2000) [Pubmed]
  18. Degradation of C/EBPbeta in cultured myotubes is calpain-dependent. Wei, W., Yang, H., Cao, P., Menconi, M., Chamberlain, C., Petkova, V., Hasselgren, P.O. J. Cell. Physiol. (2006) [Pubmed]
  19. Calpain inhibitor I retards seizure offset in the hippocampus of freely moving rats. Sierra-Paredes, G., Cornes, J.M., Sierra-Marcuño, G. Neurosci. Lett. (1999) [Pubmed]
  20. Dynamic changes in the distribution of the calcium-activated neutral protease in human red blood cells following cellular insult and altered Ca2+ homeostasis. Mortensen, A.M., Novak, R.F. Toxicol. Appl. Pharmacol. (1992) [Pubmed]
  21. Calpain inhibitor I reduces intestinal ischemia-reperfusion injury in the rat. Marzocco, S., Di Paola, R., Autore, G., Mazzon, E., Pinto, A., Caputi, A.P., Thiemermann, C., Cuzzocrea, S. Shock (2004) [Pubmed]
  22. Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Langenfeld, J., Kiyokawa, H., Sekula, D., Boyle, J., Dmitrovsky, E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbbeta3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. Schoenwaelder, S.M., Yuan, Y., Cooray, P., Salem, H.H., Jackson, S.P. J. Biol. Chem. (1997) [Pubmed]
  24. Cloning, sequencing, and enzymatic activity of an inducible aldo-keto reductase from Chinese hamster ovary cells. Hyndman, D.J., Takenoshita, R., Vera, N.L., Pang, S.C., Flynn, T.G. J. Biol. Chem. (1997) [Pubmed]
  25. Calpain inhibitor I reduces the development of acute and chronic inflammation. Cuzzocrea, S., McDonald, M.C., Mazzon, E., Siriwardena, D., Serraino, I., Dugo, L., Britti, D., Mazzullo, G., Caputi, A.P., Thiemermann, C. Am. J. Pathol. (2000) [Pubmed]
  26. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T., Hisanaga, S. J. Biol. Chem. (2000) [Pubmed]
  27. Antagonistic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptor type II in human dermal fibroblasts. Yamane, K., Ihn, H., Asano, Y., Jinnin, M., Tamaki, K. J. Immunol. (2003) [Pubmed]
  28. MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha. Hirano, M., Osada, S., Aoki, T., Hirai, S., Hosaka, M., Inoue, J., Ohno, S. J. Biol. Chem. (1996) [Pubmed]
  29. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Joe, A.K., Liu, H., Suzui, M., Vural, M.E., Xiao, D., Weinstein, I.B. Clin. Cancer Res. (2002) [Pubmed]
  30. Epidermal growth factor induces acute matrix contraction and subsequent calpain-modulated relaxation. Allen, F.D., Asnes, C.F., Chang, P., Elson, E.L., Lauffenburger, D.A., Wells, A. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. (2002) [Pubmed]
  31. Increase in ultraviolet sensitivity by overexpression of calpastatin in ultraviolet-resistant UVr-1 cells derived from ultraviolet-sensitive human RSa cells. Hiwasa, T., Arase, Y., Kikuno, K., Hasegawa, R., Sugaya, S., Kita, K., Saido, T., Yamamori, H., Maki, M., Suzuki, N. Cell Death Differ. (2000) [Pubmed]
  32. The carboxyl termini of beta-amyloid peptides 1-40 and 1-42 are generated by distinct gamma-secretase activities. Klafki, H., Abramowski, D., Swoboda, R., Paganetti, P.A., Staufenbiel, M. J. Biol. Chem. (1996) [Pubmed]
  33. Spatial resolution of calpain-catalyzed proteolysis in focal cerebral ischemia. Kambe, A., Yokota, M., Saido, T.C., Satokata, I., Fujikawa, H., Tabuchi, S., Kamitani, H., Watanabe, T. Brain Res. (2005) [Pubmed]
WikiGenes - Universities