The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors.
Currently available HIV-1 protease inhibitors are potent agents in the therapy of HIV-1 infection. However, limited oral absorption and variable tissue distribution, both of which are largely unexplained, complicate their use. We tested the hypothesis that P-glycoprotein is an important transporter for these agents. We studied the vectorial transport characteristics of indinavir, nelfinavir, and saquinavir in vitro using the model P-glycoprotein expressing cell lines L-MDR1 and Caco-2 cells, and in vivo after intravenous and oral administration of these agents to mice with a disrupted mdr1a gene. All three compounds were found to be transported by P-glycoprotein in vitro. After oral administration, plasma concentrations were elevated 2-5-fold in mdr1a (-/-) mice and with intravenous administration, brain concentrations were elevated 7-36-fold. These data demonstrate that P-glycoprotein limits the oral bioavailability and penetration of these agents into the brain. This raises the possibility that higher HIV-1 protease inhibitor concentrations may be obtained by targeted pharmacologic inhibition of P-glycoprotein transport activity.[1]References
- The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. Kim, R.B., Fromm, M.F., Wandel, C., Leake, B., Wood, A.J., Roden, D.M., Wilkinson, G.R. J. Clin. Invest. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg