The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Caco-2 Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Caco-2 Cells


High impact information on Caco-2 Cells

  • We found that Caco-2 cells are capable of dose-dependent, facilitated transcytosis of SEB and TSST-1, but not SEA [6].
  • Apical (but not basolateral) leptin increased Caco-2 cell transport of cephalexin (CFX) and glycylsarcosine (Gly-Sar), an effect that was associated with increased Gly-Sar uptake, increased membrane PepT1 protein, decreased intracellular PepT1 content, and no change in PepT1 mRNA levels [7].
  • In accordance with this suggestion, treatment of Caco-2 cells with cholera toxin, which elevated intracellular cAMP levels, was found to inhibit taurine uptake [1].
  • STa caused a 21-fold increase in guanosine 3',5'-cyclic monophosphate (cGMP) levels in Caco-2 cells with no change in cAMP levels [1].
  • METHODS: Interleukin-1beta-stimulated Caco-2 cells were exposed basolaterally to nanomolar concentrations of activated MMP-3 or cocultured with interleukin-1beta-stimulated, MMP-producing, colonic myofibroblasts (CCD-18co) [8].

Chemical compound and disease context of Caco-2 Cells


Biological context of Caco-2 Cells


Anatomical context of Caco-2 Cells


Associations of Caco-2 Cells with chemical compounds


Gene context of Caco-2 Cells


Analytical, diagnostic and therapeutic context of Caco-2 Cells


  1. Regulation of taurine transport by Escherichia coli heat-stable enterotoxin and guanylin in human intestinal cell lines. Brandsch, M., Ramamoorthy, S., Marczin, N., Catravas, J.D., Leibach, J.W., Ganapathy, V., Leibach, F.H. J. Clin. Invest. (1995) [Pubmed]
  2. Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues. Zurzolo, C., Polistina, C., Saini, M., Gentile, R., Aloj, L., Migliaccio, G., Bonatti, S., Nitsch, L. J. Cell Biol. (1992) [Pubmed]
  3. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Tsujii, M., Kawano, S., DuBois, R.N. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. Decreased PKC-alpha expression increases cellular proliferation, decreases differentiation, and enhances the transformed phenotype of CaCo-2 cells. Scaglione-Sewell, B., Abraham, C., Bissonnette, M., Skarosi, S.F., Hart, J., Davidson, N.O., Wali, R.K., Davis, B.H., Sitrin, M., Brasitus, T.A. Cancer Res. (1998) [Pubmed]
  5. Constitutive insulin-like growth factor-II expression interferes with the enterocyte-like differentiation of CaCo-2 cells. Zarrilli, R., Romano, M., Pignata, S., Casola, S., Bruni, C.B., Acquaviva, A.M. J. Biol. Chem. (1996) [Pubmed]
  6. Transcytosis of staphylococcal superantigen toxins. Hamad, A.R., Marrack, P., Kappler, J.W. J. Exp. Med. (1997) [Pubmed]
  7. PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. Buyse, M., Berlioz, F., Guilmeau, S., Tsocas, A., Voisin, T., Péranzi, G., Merlin, D., Laburthe, M., Lewin, M.J., Rozé, C., Bado, A. J. Clin. Invest. (2001) [Pubmed]
  8. Myofibroblast matrix metalloproteinases activate the neutrophil chemoattractant CXCL7 from intestinal epithelial cells. Kruidenier, L., MacDonald, T.T., Collins, J.E., Pender, S.L., Sanderson, I.R. Gastroenterology (2006) [Pubmed]
  9. Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy. Cermak, J., Balla, J., Jacob, H.S., Balla, G., Enright, H., Nath, K., Vercellotti, G.M. Cancer Res. (1993) [Pubmed]
  10. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts. Moschetta, A., vanBerge-Henegouwen, G.P., Portincasa, P., Palasciano, G., Groen, A.K., van Erpecum, K.J. J. Lipid Res. (2000) [Pubmed]
  11. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. Moschetta, A., vanBerge-Henegouwen, G.P., Portincasa, P., Renooij, W.L., Groen, A.K., van Erpecum, K.J. J. Hepatol. (2001) [Pubmed]
  12. A cyclic AMP protein kinase A-dependent mechanism by which rotavirus impairs the expression and enzyme activity of brush border-associated sucrase-isomaltase in differentiated intestinal Caco-2 cells. Martin-Latil, S., Cotte-Laffitte, J., Beau, I., Quéro, A.M., Géniteau-Legendre, M., Servin, A.L. Cell. Microbiol. (2004) [Pubmed]
  13. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Hudault, S., Liévin, V., Bernet-Camard, M.F., Servin, A.L. Appl. Environ. Microbiol. (1997) [Pubmed]
  14. Glycine supply to human enterocytes mediated by high-affinity basolateral GLYT1. Christie, G.R., Ford, D., Howard, A., Clark, M.A., Hirst, B.H. Gastroenterology (2001) [Pubmed]
  15. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. Rindler, M.J., Traber, M.G. J. Cell Biol. (1988) [Pubmed]
  16. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Ruemmele, F.M., Dionne, S., Qureshi, I., Sarma, D.S., Levy, E., Seidman, E.G. Cell Death Differ. (1999) [Pubmed]
  17. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Reinecker, H.C., Loh, E.Y., Ringler, D.J., Mehta, A., Rombeau, J.L., MacDermott, R.P. Gastroenterology (1995) [Pubmed]
  18. Polarized secretion of diamine oxidase by intestinal epithelial cells and its stimulation by heparin. Daniele, B., Quaroni, A. Gastroenterology (1990) [Pubmed]
  19. H+/amino acid transporter 1 (PAT1) is the imino acid carrier: An intestinal nutrient/drug transporter in human and rat. Anderson, C.M., Grenade, D.S., Boll, M., Foltz, M., Wake, K.A., Kennedy, D.J., Munck, L.K., Miyauchi, S., Taylor, P.M., Campbell, F.C., Munck, B.G., Daniel, H., Ganapathy, V., Thwaites, D.T. Gastroenterology (2004) [Pubmed]
  20. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Chen, F., Ananthanarayanan, M., Emre, S., Neimark, E., Bull, L.N., Knisely, A.S., Strautnieks, S.S., Thompson, R.J., Magid, M.S., Gordon, R., Balasubramanian, N., Suchy, F.J., Shneider, B.L. Gastroenterology (2004) [Pubmed]
  21. Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells. Wingler, K., Müller, C., Schmehl, K., Florian, S., Brigelius-Flohé, R. Gastroenterology (2000) [Pubmed]
  22. High-density lipoprotein 3 retroendocytosis: a new lipoprotein pathway in the enterocyte (Caco-2). Rogler, G., Herold, G., Fahr, C., Fahr, M., Rogler, D., Reimann, F.M., Stange, E.F. Gastroenterology (1992) [Pubmed]
  23. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Resta-Lenert, S., Barrett, K.E. Gastroenterology (2002) [Pubmed]
  24. Relation between integrin alpha7Bbeta1 expression in human intestinal cells and enterocytic differentiation. Basora, N., Vachon, P.H., Herring-Gillam, F.E., Perreault, N., Beaulieu, J.F. Gastroenterology (1997) [Pubmed]
  25. Omega 3-lipid peroxides injure CaCo-2 cells: relationship to the development of reduced glutathione antioxidant systems. Cepinskas, G., Kvietys, P.R., Aw, T.Y. Gastroenterology (1994) [Pubmed]
  26. Lysophosphatidylcholine increases 3-Hydroxy-3-methylglutaryl-coenzyme A reductase gene expression in CaCo-2 cells. Muir, L.V., Born, E., Mathur, S.N., Field, F.J. Gastroenterology (1996) [Pubmed]
  27. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. Sadir, R., Imberty, A., Baleux, F., Lortat-Jacob, H. J. Biol. Chem. (2004) [Pubmed]
  28. Transcriptional induction of CYP1A1 by oltipraz in human Caco-2 cells is aryl hydrocarbon receptor- and calcium-dependent. Le Ferrec, E., Lagadic-Gossmann, D., Rauch, C., Bardiau, C., Maheo, K., Massiere, F., Le Vee, M., Guillouzo, A., Morel, F. J. Biol. Chem. (2002) [Pubmed]
  29. Enterophilin-1, a new partner of sorting nexin 1, decreases cell surface epidermal growth factor receptor. Pons, V., Hullin-Matsuda, F., Nauze, M., Barbaras, R., Pérès, C., Collet, X., Perret, B., Chap, H., Gassama-Diagne, A. J. Biol. Chem. (2003) [Pubmed]
  30. 1,25-Dihydroxyvitamin D(3) stimulates activator protein-1-dependent Caco-2 cell differentiation. Chen, A., Davis, B.H., Bissonnette, M., Scaglione-Sewell, B., Brasitus, T.A. J. Biol. Chem. (1999) [Pubmed]
  31. A small rab GTPase is distributed in cytoplasmic vesicles in non polarized cells but colocalizes with the tight junction marker ZO-1 in polarized epithelial cells. Zahraoui, A., Joberty, G., Arpin, M., Fontaine, J.J., Hellio, R., Tavitian, A., Louvard, D. J. Cell Biol. (1994) [Pubmed]
  32. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Yun, C.H., Oh, S., Zizak, M., Steplock, D., Tsao, S., Tse, C.M., Weinman, E.J., Donowitz, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  33. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Narayanan, B.A., Narayanan, N.K., Simi, B., Reddy, B.S. Cancer Res. (2003) [Pubmed]
  34. Transcriptional regulation of the cholesteryl ester transfer protein gene by the orphan nuclear hormone receptor apolipoprotein AI regulatory protein-1. Gaudet, F., Ginsburg, G.S. J. Biol. Chem. (1995) [Pubmed]
  35. Ontogeny, immunolocalisation, distribution and function of SR-BI in the human intestine. Levy, E., Ménard, D., Suc, I., Delvin, E., Marcil, V., Brissette, L., Thibault, L., Bendayan, M. J. Cell. Sci. (2004) [Pubmed]
WikiGenes - Universities