The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

DNA cleavage induced by oxyl radicals generated in the photosensitized decomposition of fatty ester hydroperoxides derived from oleic and linoleic acid.

The xanthone-sensitized photodecomposition of the fatty ester hydroperoxides 1 and 2 in the presence of pBR 322 DNA was investigated as a chemical model system to assess whether this process may cause DNA damage through oxyl radicals. Unequivocally, oxyl radicals are formed in the xanthone-sensitized photodecomposition of the hydroperoxides 1 and 2, as confirmed by EPR studies. Indeed, both hydroperoxides 1 and 2 induce DNA single-strand breaks upon uv-A irradiation in the presence of the exogenous sensitizer xanthone. Under similar reaction conditions, the corresponding alcohol 3 of the hydroperoxide 1 was ineffective. Mannitol as radical scavenger inhibited significantly the formation of DNA single-strand breaks in the xanthone-sensitized decomposition of the hydroperoxides 1 and 2. Irradiation of xanthone alone or the hydroperoxides 1 and 2 without sensitizer did not cause any detectable DNA single-strand breaks. These results confirm that photosensitization of the fatty ester hydroperoxides 1 and 2 induces DNA modifications by oxyl radicals. We suspect that the combination of endogenous photosensitizers, solar uv radiation, and lipid hydroperoxides may damage cellular DNA through oxyl radicals.[1]

References

 
WikiGenes - Universities