The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular cloning of YlPMR1, a S. cerevisiae PMR1 homologue encoding a novel P-type secretory pathway Ca2+ -ATPase, in the yeast Yarrowia lipolytica.

A novel P-type ATPase gene, Saccharomyces cerevisiae PMR1 homologue (YlPMR1), has been cloned and sequenced in the yeast, Yarrowia lipolytica. The putative gene product has 928 amino acids with a calculated molecular mass of 100050 Da and a pI of 5.15. The deduced amino-acid sequence analysis demonstrated that the cloned gene product contains all 10 of the conserved regions in P-type ATPases and exhibits 55% amino-acid identity to the S. cerevisiae PMR1 gene product; however, it shows a relatively lower homology to PMCA (24%) and SERCA (33%), confirming the presence of a third class of Ca2+-ATPase (secretory pathway Ca2+-ATPase, SPCA). The YlPMR1-disrupted strain shows defective growth in low Ca2+ or EGTA-containing medium. In fact, a longer lag time (60 h) was observed in YlPMR1-defective mutant cells during cultivation in EGTA-containing YPD medium. These growth defects were overcome by adding Ca2+ and Mn2+ into the medium. Interestingly, whereas Mn2+ inhibits growth of the control strain, it significantly improves the growth of YlPMR1-disrupted cells. These results suggest an involvement of the YlPMR1 gene product in Ca2+ and Mn2+ ion homeostasis in Y. lipolytica.[1]


WikiGenes - Universities