CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation.
The transcription factor GATA-1 coordinates multiple events during terminal erythroid cell maturation. GATA-1 participates in the transcription of virtually all erythroid-specific genes, blocks apoptosis of precursor cells, and controls the balance between proliferation and cell cycle arrest. Prior studies suggest that the function of GATA-1 is mediated in part through association with transcriptional cofactors. CREB-binding protein (CBP) and its close relative p300 serve as coactivators for a variety of transcription factors involved in growth control and differentiation. We report here that CBP markedly stimulates GATA-1's transcriptional activity in transient transfection experiments in nonhematopoietic cells. GATA-1 and CBP also coimmunoprecipitate from nuclear extracts of erythroid cells. Interaction mapping pinpoints contact sites to the zinc finger region of GATA-1 and to the E1A- binding region of CBP. Expression of a conditional form of adenovirus E1A in murine erythroleukemia cells blocks differentiation and expression of endogenous GATA-1 target genes, whereas mutant forms of E1A unable to bind CBP/ p300 have no effect. Our findings add GATA-1, and very likely other members of the GATA family, to the growing list of molecules implicated in the complex regulatory network surrounding CBP/ p300.[1]References
- CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Blobel, G.A., Nakajima, T., Eckner, R., Montminy, M., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg