The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Gata1  -  GATA binding protein 1

Mus musculus

Synonyms: Eryf1, Erythroid transcription factor, GATA-1, GATA-binding factor 1, GF-1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gata1


High impact information on Gata1


Chemical compound and disease context of Gata1


Biological context of Gata1


Anatomical context of Gata1


Associations of Gata1 with chemical compounds

  • The levels of total and of distal, but not of proximal, Gata1 transcripts increased by five- to eightfold during in vivo and in vitro differentiation of FVA and PHZ cells [18].
  • Gata1 was expressed maximally in Rho-bright cells but was below the level of detection in Rho-dull cells [21].
  • GATA-1-deficient platelets show abnormal ultrastructure, reminiscent of the megakaryocytes from which they are derived, and exhibit modest but selective defects in platelet activation in response to thrombin or to the combination of adenosine diphosphate (ADP) and epinephrine [1].
  • Importantly, mutations in the -29/-24 GATA motif rendered the promoter unresponsive to DMSO induction [22].
  • Here, we have generated mouse knock-in (KI) mutants harboring a critical valine-to-glycine substitution in the amino-terminal zinc fingers of GATA-1 and GATA-2 to ablate FOG interaction [23].

Physical interactions of Gata1

  • Interaction mapping pinpoints contact sites to the zinc finger region of GATA-1 and to the E1A-binding region of CBP [24].
  • We have studied the promoter of the EKLF gene and identified binding sites for the transcription factors GATA-1 and CCAAT-binding Protein 1 (CP1) [25].
  • Furthermore DNA-protein interaction in in vitro studies showed first that GATA-1 binds with various affinities on sites found in the AMH promoter and second that the proximity of the two strongest affinity sites leads to a synergistic binding effect [26].
  • Friend of GATA-1 (FOG-1) interacts with GATA-1 and is expressed principally in hematopoietic lineages, whereas FOG-2 is expressed predominantly in heart and brain [27].
  • We have shown that GATA-1 interacts physically with Sp1 and EKLF and that interactions are mediated through their respective DNA-binding domains [28].

Enzymatic interactions of Gata1


Regulatory relationships of Gata1

  • The c-mpl ligand mRNA was equally expressed both in parental M1 cells and in those transfected with the GATA-1 expression vector [31].
  • These findings suggest that the upregulation of c-mpl induced by GATA-1 expression in M1 cells is closely associated with erythroid and megakaryocytic differentiation [31].
  • The EKLF promoter can be directly activated in nonerythroid cells in cotransfection experiments by forced expression of GATA-1 [25].
  • FOG-1 can stimulate or inhibit GATA-1 activity depending on cell and promoter context [20].
  • Forced expression of GATA-1 induced the appearance of erythroid cells and megakaryocytes as assessed by cellular morphology, acetylcholinesterase activity, and expression of platelet factor 4 and beta-globin mRNA synthesis [31].

Other interactions of Gata1


Analytical, diagnostic and therapeutic context of Gata1


  1. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H., Shivdasani, R.A. Blood (1999) [Pubmed]
  2. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Vannucchi, A.M., Bianchi, L., Paoletti, F., Pancrazzi, A., Torre, E., Nishikawa, M., Zingariello, M., Di Baldassarre, A., Rana, R.A., Lorenzini, R., Alfani, E., Migliaccio, G., Migliaccio, A.R. Blood (2005) [Pubmed]
  3. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Muntean, A.G., Crispino, J.D. Blood (2005) [Pubmed]
  4. Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. Skoda, R.C., Tsai, S.F., Orkin, S.H., Leder, P. J. Exp. Med. (1995) [Pubmed]
  5. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  6. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Hollanda, L.M., Lima, C.S., Cunha, A.F., Albuquerque, D.M., Vassallo, J., Ozelo, M.C., Joazeiro, P.P., Saad, S.T., Costa, F.F. Nat. Genet. (2006) [Pubmed]
  7. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Yoshida, C.A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., Komori, T. Nat. Genet. (2002) [Pubmed]
  8. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Tevosian, S.G., Deconinck, A.E., Tanaka, M., Schinke, M., Litovsky, S.H., Izumo, S., Fujiwara, Y., Orkin, S.H. Cell (2000) [Pubmed]
  9. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Tsang, A.P., Visvader, J.E., Turner, C.A., Fujiwara, Y., Yu, C., Weiss, M.J., Crossley, M., Orkin, S.H. Cell (1997) [Pubmed]
  10. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Chang, T.J., Scher, B.M., Waxman, S., Scher, W. Mol. Endocrinol. (1993) [Pubmed]
  11. SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. Green, A.R., Lints, T., Visvader, J., Harvey, R., Begley, C.G. Oncogene (1992) [Pubmed]
  12. A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia. Majewski, I.J., Metcalf, D., Mielke, L.A., Krebs, D.L., Ellis, S., Carpinelli, M.R., Mifsud, S., Di Rago, L., Corbin, J., Nicola, N.A., Hilton, D.J., Alexander, W.S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  13. Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Makita, T., Duncan, S.A., Sucov, H.M. Dev. Biol. (2005) [Pubmed]
  14. Real-time monitoring of stress erythropoiesis in vivo using Gata1 and beta-globin LCR luciferase transgenic mice. Suzuki, M., Ohneda, K., Hosoya-Ohmura, S., Tsukamoto, S., Ohneda, O., Philipsen, S., Yamamoto, M. Blood (2006) [Pubmed]
  15. Homotypic signalling regulates Gata1 activity in the erythroblastic island. Gutiérrez, L., Lindeboom, F., Langeveld, A., Grosveld, F., Philipsen, S., Whyatt, D. Development (2004) [Pubmed]
  16. The mouse homolog of the Wiskott-Aldrich syndrome protein (WASP) gene is highly conserved and maps near the scurfy (sf) mutation on the X chromosome. Derry, J.M., Wiedemann, P., Blair, P., Wang, Y., Kerns, J.A., Lemahieu, V., Godfrey, V.L., Wilkinson, J.E., Francke, U. Genomics (1995) [Pubmed]
  17. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Matsumoto, N., Kubo, A., Liu, H., Akita, K., Laub, F., Ramirez, F., Keller, G., Friedman, S.L. Blood (2006) [Pubmed]
  18. Increased expression of the distal, but not of the proximal, Gata1 transcripts during differentiation of primary erythroid cells. Vannucchi, A.M., Linari, S., Lin, C.S., Koury, M.J., Bondurant, M.C., Migliaccio, A.R. J. Cell. Physiol. (1999) [Pubmed]
  19. A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Lindeboom, F., Gillemans, N., Karis, A., Jaegle, M., Meijer, D., Grosveld, F., Philipsen, S. Nucleic Acids Res. (2003) [Pubmed]
  20. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. Wang, X., Crispino, J.D., Letting, D.L., Nakazawa, M., Poncz, M., Blobel, G.A. EMBO J. (2002) [Pubmed]
  21. Growth factor receptor expression during in vitro differentiation of partially purified populations containing murine stem cells. Ashihara, E., Vannucchi, A.M., Migliaccio, G., Migliaccio, A.R. J. Cell. Physiol. (1997) [Pubmed]
  22. Induction of erythrocyte protein 4.2 gene expression during differentiation of murine erythroleukemia cells. Karacay, B., Chang, L.S. Genomics (1999) [Pubmed]
  23. GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis. Chang, A.N., Cantor, A.B., Fujiwara, Y., Lodish, M.B., Droho, S., Crispino, J.D., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  24. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Blobel, G.A., Nakajima, T., Eckner, R., Montminy, M., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  25. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. Crossley, M., Tsang, A.P., Bieker, J.J., Orkin, S.H. J. Biol. Chem. (1994) [Pubmed]
  26. GATA-1 is a potential repressor of anti-Müllerian hormone expression during the establishment of puberty in the mouse. Beau, C., Rauch, M., Joulin, V., Jégou, B., Guerrier, D. Mol. Reprod. Dev. (2000) [Pubmed]
  27. FOG acts as a repressor of red blood cell development in Xenopus. Deconinck, A.E., Mead, P.E., Tevosian, S.G., Crispino, J.D., Katz, S.G., Zon, L.I., Orkin, S.H. Development (2000) [Pubmed]
  28. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Merika, M., Orkin, S.H. Mol. Cell. Biol. (1995) [Pubmed]
  29. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Kadri, Z., Maouche-Chretien, L., Rooke, H.M., Orkin, S.H., Romeo, P.H., Mayeux, P., Leboulch, P., Chretien, S. Mol. Cell. Biol. (2005) [Pubmed]
  30. MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. Yu, Y.L., Chiang, Y.J., Chen, Y.C., Papetti, M., Juo, C.G., Skoultchi, A.I., Yen, J.J. J. Biol. Chem. (2005) [Pubmed]
  31. Forced GATA-1 expression in the murine myeloid cell line M1: induction of c-Mpl expression and megakaryocytic/erythroid differentiation. Yamaguchi, Y., Zon, L.I., Ackerman, S.J., Yamamoto, M., Suda, T. Blood (1998) [Pubmed]
  32. Endothelial lineage-mediated loss of the GATA cofactor Friend of GATA 1 impairs cardiac development. Katz, S.G., Williams, A., Yang, J., Fujiwara, Y., Tsang, A.P., Epstein, J.A., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  33. PU.1 and GATA: components of a mast cell-specific interleukin 4 intronic enhancer. Henkel, G., Brown, M.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  34. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. Yamashita, M., Ukai-Tadenuma, M., Kimura, M., Omori, M., Inami, M., Taniguchi, M., Nakayama, T. J. Biol. Chem. (2002) [Pubmed]
  35. Isolation of TPO-dependent subclones from the multipotent 32D cell line. Amabile, G., Di Noia, A., Alfani, E., Vannucchi, A.M., Sanchez, M., Bosco, D., Migliaccio, A.R., Migliaccio, G. Blood Cells Mol. Dis. (2005) [Pubmed]
  36. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1. Stachura, D.L., Chou, S.T., Weiss, M.J. Blood (2006) [Pubmed]
  37. Abundant expression of transcription factor GATA-2 in proliferating but not in differentiated mast cells in tissues of mice: demonstration by in situ hybridization. Jippo, T., Mizuno, H., Xu, Z., Nomura, S., Yamamoto, M., Kitamura, Y. Blood (1996) [Pubmed]
  38. Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo. Ema, M., Yokomizo, T., Wakamatsu, A., Terunuma, T., Yamamoto, M., Takahashi, S. Blood (2006) [Pubmed]
  39. FOG-1 represses GATA-1-dependent FcepsilonRI beta-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice. Maeda, K., Nishiyama, C., Tokura, T., Nakano, H., Kanada, S., Nishiyama, M., Okumura, K., Ogawa, H. Blood (2006) [Pubmed]
WikiGenes - Universities