The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Spta1  -  spectrin alpha, erythrocytic 1

Mus musculus

Synonyms: AF093576, AI451697, Erythroid alpha-spectrin, Spectrin alpha chain, erythrocytic 1, Spna-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spna1

 

Psychiatry related information on Spna1

  • We studied changes in the erythroid hemopoietic stem in CBA/CaLac mice with experimental neuroses demonstrating good and poor learning capacities (conflict situation and paradoxical sleep deprivation followed by training in a 3-arm T-maze) [6].
  • Attempts to alleviate the effects of water deprivation and reduced food consumption by effects of water deprivation and reduced food consumption by water injections and the feeding of supplemented diets were only marginally effective at ameliorating the erythroid suppression [7].
 

High impact information on Spna1

  • Overexpression of Steap3 stimulates the reduction of iron, and mice lacking Steap3 are deficient in erythroid ferrireductase activity [8].
  • Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells [8].
  • Hemoglobin deficit (hbd) mice carry a spontaneous mutation that impairs erythroid iron assimilation but does not cause other defects [9].
  • We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates [10].
  • Determining the molecular basis of the hbd phenotype provides new insight into the intricate mechanisms necessary for normal erythroid iron uptake and the function of a mammalian exocyst protein [9].
 

Chemical compound and disease context of Spna1

 

Biological context of Spna1

  • The Lp gene has been mapped to a 0.6-cM interval on mouse chromosome 1 delineated by two clusters of markers, Fcer1gamma/Usf1/D1Mit113/D1Wsu1 on the proximal side and Fcer1alpha/Spna1/D1Mit149 distally [16].
  • Sequencing of the full length coding region of the Spna1 wild type allele from the C57BL/6J strain of mice reveals a 2414 residue deduced amino acid sequence that shows the typical 106-amino-acid repeat structure previously described for other members of the spectrin protein family [17].
  • Complete nucleotide sequence of the murine erythroid beta-spectrin cDNA and tissue-specific expression in normal and jaundiced mice [18].
  • We examined the tissue distribution of normal and mutant erythroid beta-spectrin transcripts using domain-specific probes [18].
  • It performs two critical biological functions: maintaining ionic homeostasis, by transporting Cl- and HCO3-ions, and providing mechanical stability to the erythroid membrane [19].
 

Anatomical context of Spna1

 

Associations of Spna1 with chemical compounds

  • To enhance the usefulness of this model, we have identified the Ank1nb mutation as the deletion of a guanosine residue in exon 36 of the erythroid ankyrin gene (Ank1) [23].
  • We have recently found that the erythroid ankyrin gene, Ank1, expresses isoforms in mouse skeletal muscle, several of which share COOH-terminal sequence with previously known Ank1 isoforms but have a novel, highly hydrophobic 72-amino acid segment at their NH2 termini [24].
  • Cox-2-/- mice had markedly decreased bone marrow cell counts per femur and reduced numbers of erythroid and myeloid colony-forming cells compared to heterozygote mice on days 8 and 12 post 5-FU [25].
  • Furthermore, during erythroid maturation of mouse erythroleukaemia (MEL) cells by dimethylsulfoxide, NuSAP mRNA was increased at 24-72 h [26].
  • 1R compromises membrane skeleton assembly in erythroid progenitors [27].
 

Physical interactions of Spna1

 

Enzymatic interactions of Spna1

 

Regulatory relationships of Spna1

 

Other interactions of Spna1

 

Analytical, diagnostic and therapeutic context of Spna1

References

  1. Thrombosis and secondary hemochromatosis play major roles in the pathogenesis of jaundiced and spherocytic mice, murine models for hereditary spherocytosis. Kaysser, T.M., Wandersee, N.J., Bronson, R.T., Barker, J.E. Blood (1997) [Pubmed]
  2. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Paw, B.H., Davidson, A.J., Zhou, Y., Li, R., Pratt, S.J., Lee, C., Trede, N.S., Brownlie, A., Donovan, A., Liao, E.C., Ziai, J.M., Drejer, A.H., Guo, W., Kim, C.H., Gwynn, B., Peters, L.L., Chernova, M.N., Alper, S.L., Zapata, A., Wickramasinghe, S.N., Lee, M.J., Lux, S.E., Fritz, A., Postlethwait, J.H., Zon, L.I. Nat. Genet. (2003) [Pubmed]
  3. Rapid capping in alpha-spectrin-deficient MEL cells from mice afflicted with hereditary hemolytic anemia. Dahl, S.C., Geib, R.W., Fox, M.T., Edidin, M., Branton, D. J. Cell Biol. (1994) [Pubmed]
  4. Defective spectrin integrity and neonatal thrombosis in the first mouse model for severe hereditary elliptocytosis. Wandersee, N.J., Roesch, A.N., Hamblen, N.R., de Moes, J., van der Valk, M.A., Bronson, R.T., Gimm, J.A., Mohandas, N., Demant, P., Barker, J.E. Blood (2001) [Pubmed]
  5. Major erythrocyte membrane protein genes in EKLF-deficient mice. Nilson, D.G., Sabatino, D.E., Bodine, D.M., Gallagher, P.G. Exp. Hematol. (2006) [Pubmed]
  6. Specific features of the erythroid hemopoietic stem in CBA/CaLac mice with neuroses demonstrating good and poor learning capacities. Pershina, O.V., Skurikhin, E.G., Stavrova, L.A., Suslov, N.I., Dygai, A.M. Bull. Exp. Biol. Med. (2004) [Pubmed]
  7. Effect of food or water restriction on erythropoiesis in mice: relevance to "anemia" of space flight. Dunn, C.D. Am. J. Physiol. (1980) [Pubmed]
  8. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Ohgami, R.S., Campagna, D.R., Greer, E.L., Antiochos, B., McDonald, A., Chen, J., Sharp, J.J., Fujiwara, Y., Barker, J.E., Fleming, M.D. Nat. Genet. (2005) [Pubmed]
  9. A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Lim, J.E., Jin, O., Bennett, C., Morgan, K., Wang, F., Trenor, C.C., Fleming, M.D., Andrews, N.C. Nat. Genet. (2005) [Pubmed]
  10. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Adolfsson, J., Månsson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, L., Borge, O.J., Thoren, L.A., Anderson, K., Sitnicka, E., Sasaki, Y., Sigvardsson, M., Jacobsen, S.E. Cell (2005) [Pubmed]
  11. Erythroid phosphatidyl serine exposure is not predictive of thrombotic risk in mice with hemolytic anemia. Wandersee, N.J., Tait, J.F., Barker, J.E. Blood Cells Mol. Dis. (2000) [Pubmed]
  12. Specific pattern of gene expression during induction of mouse erythroleukemia cells. Fraser, P.J., Curtis, P.J. Genes Dev. (1987) [Pubmed]
  13. Maturation of murine erythroleukemia cells committed to differentiation requires protein kinase C. GuptaRoy, B., Cohen, C.M. J. Biol. Chem. (1992) [Pubmed]
  14. Nitric oxide-releasing agents and cGMP analogues inhibit murine erythroleukemia cell differentiation and suppress erythroid-specific gene expression: correlation with decreased DNA binding of NF-E2 and altered c-myb mRNA expression. Suhasini, M., Boss, G.R., Pascual, F.E., Pilz, R.B. Cell Growth Differ. (1995) [Pubmed]
  15. Erythroblasts from friend virus infected- and phenylhydrazine-treated mice accurately model erythroid differentiation. Hodges, V.M., Winter, P.C., Lappin, T.R. Br. J. Haematol. (1999) [Pubmed]
  16. Physical delineation of a 700-kb region overlapping the Looptail mutation on mouse chromosome 1. Underhill, D.A., Mullick, A., Groulx, N., Beatty, B.G., Gros, P. Genomics (1999) [Pubmed]
  17. Murine recessive hereditary spherocytosis, sph/sph, is caused by a mutation in the erythroid alpha-spectrin gene. Wandersee, N.J., Birkenmeier, C.S., Gifford, E.J., Mohandas, N., Barker, J.E. Hematol. J. (2000) [Pubmed]
  18. Complete nucleotide sequence of the murine erythroid beta-spectrin cDNA and tissue-specific expression in normal and jaundiced mice. Bloom, M.L., Birkenmeier, C.S., Barker, J.E. Blood (1993) [Pubmed]
  19. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Southgate, C.D., Chishti, A.H., Mitchell, B., Yi, S.J., Palek, J. Nat. Genet. (1996) [Pubmed]
  20. Ankyrin and the hemolytic anemia mutation, nb, map to mouse chromosome 8: presence of the nb allele is associated with a truncated erythrocyte ankyrin. White, R.A., Birkenmeier, C.S., Lux, S.E., Barker, J.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Peters, L.L., Andrews, N.C., Eicher, E.M., Davidson, M.B., Orkin, S.H., Lux, S.E. Nature (1993) [Pubmed]
  22. Novel murine homeo box gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis. Allen, J.D., Lints, T., Jenkins, N.A., Copeland, N.G., Strasser, A., Harvey, R.P., Adams, J.M. Genes Dev. (1991) [Pubmed]
  23. Normoblastosis, a murine model for ankyrin-deficient hemolytic anemia, is caused by a hypomorphic mutation in the erythroid ankyrin gene Ank1. Birkenmeier, C.S., Gifford, E.J., Barker, J.E. Hematol. J. (2003) [Pubmed]
  24. Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle. Zhou, D., Birkenmeier, C.S., Williams, M.W., Sharp, J.J., Barker, J.E., Bloch, R.J. J. Cell Biol. (1997) [Pubmed]
  25. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Lorenz, M., Slaughter, H.S., Wescott, D.M., Carter, S.I., Schnyder, B., Dinchuk, J.E., Car, B.D. Exp. Hematol. (1999) [Pubmed]
  26. Expression analyses and transcriptional regulation of mouse nucleolar spindle-associated protein gene in erythroid cells: essential role of NF-Y. Fujiwara, T., Harigae, H., Okitsu, Y., Takahashi, S., Yokoyama, H., Yamada, M.F., Ishizawa, K., Kameoka, J., Kaku, M., Sasaki, T. Br. J. Haematol. (2006) [Pubmed]
  27. Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. Shi, Z.T., Afzal, V., Coller, B., Patel, D., Chasis, J.A., Parra, M., Lee, G., Paszty, C., Stevens, M., Walensky, L., Peters, L.L., Mohandas, N., Rubin, E., Conboy, J.G. J. Clin. Invest. (1999) [Pubmed]
  28. The G185R mutation disrupts function of the iron transporter Nramp2. Su, M.A., Trenor, C.C., Fleming, J.C., Fleming, M.D., Andrews, N.C. Blood (1998) [Pubmed]
  29. Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse beta maj globin promoter but not its distal enhancer. Reddy, P.M., Shen, C.K. Mol. Cell. Biol. (1993) [Pubmed]
  30. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Blobel, G.A., Nakajima, T., Eckner, R., Montminy, M., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  31. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. Stopka, T., Amanatullah, D.F., Papetti, M., Skoultchi, A.I. EMBO J. (2005) [Pubmed]
  32. Changes in E2F DNA-binding activity during induced erythroid differentiation. Richon, V.M., Venta-Perez, G. Cell Growth Differ. (1996) [Pubmed]
  33. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload. Nakajima, O., Takahashi, S., Harigae, H., Furuyama, K., Hayashi, N., Sassa, S., Yamamoto, M. EMBO J. (1999) [Pubmed]
  34. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Zhao, W., Kitidis, C., Fleming, M.D., Lodish, H.F., Ghaffari, S. Blood (2006) [Pubmed]
  35. Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression. Chida, D., Miura, O., Yoshimura, A., Miyajima, A. Blood (1999) [Pubmed]
  36. A naturally occurring point substitution in Cdc25A, and not Fv2/Stk, is associated with altered cell-cycle status of early erythroid progenitor cells. Melkun, E., Pilione, M., Paulson, R.F. Blood (2002) [Pubmed]
  37. PECAM-1 is expressed on hematopoietic stem cells throughout ontogeny and identifies a population of erythroid progenitors. Baumann, C.I., Bailey, A.S., Li, W., Ferkowicz, M.J., Yoder, M.C., Fleming, W.H. Blood (2004) [Pubmed]
  38. c-Jun inhibits NF-E2 transcriptional activity in association with p18/maf in Friend erythroleukemia cells. Francastel, C., Augery-Bourget, Y., Prenant, M., Walters, M., Martin, D.I., Robert-Lézénès, J. Oncogene (1997) [Pubmed]
  39. Activin A induces erythroid gene expressions and inhibits mitogenic cytokine-mediated K562 colony formation by activating p38 MAPK. Huang, H.M., Chiou, H.Y., Chang, J.L. J. Cell. Biochem. (2006) [Pubmed]
  40. Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Bodine, D.M., Birkenmeier, C.S., Barker, J.E. Cell (1984) [Pubmed]
  41. Chromosomal location of three spectrin genes: relationship to the inherited hemolytic anemias of mouse and man. Birkenmeier, C.S., McFarland-Starr, E.C., Barker, J.E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  42. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Galy, A., Travis, M., Cen, D., Chen, B. Immunity (1995) [Pubmed]
  43. Anion transport in oocytes of Xenopus laevis induced by expression of mouse erythroid band 3 protein--encoding cRNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate binding site. Bartel, D., Lepke, S., Layh-Schmitt, G., Legrum, B., Passow, H. EMBO J. (1989) [Pubmed]
 
WikiGenes - Universities