The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CYP3A4-mediated oxidation of lisofylline to lisofylline 4,5-diol in human liver microsomes.

The cytochrome P450s responsible for the conversion of lisofylline, a drug being developed to prevent the complications of high-dose chemotherapy, to lisofylline 4,5-diol, one of two principal metabolites in human liver microsomes, were evaluated. Lisofylline diol formation in microsomes prepared from five adult human livers was biphasic, with respective Km values of 0.0230+/-0.015 and 4.23+/-2.8 mM (mean +/- SD) and respective Vmax values of 0.0565+/-0.052 and 0.429+/-0.15 nmol/min/mg of protein. Through studies with isoform selective chemical inhibitors, CYP3A4 was implicated as the low Km enzyme from 89.0+/-11.2% inhibition of lisofylline 4,5-diol formation by troleandomycin at 50 microM substrate and CYP2A6 was implicated as the high Km enzyme. The formation of lisofylline 4,5-diol by these enzymes was confirmed with cDNA-expressed human CYP3A4 and CYP2A6.[1]

References

  1. CYP3A4-mediated oxidation of lisofylline to lisofylline 4,5-diol in human liver microsomes. Shin, H.S., Slattery, J.T. Journal of pharmaceutical sciences. (1998) [Pubmed]
 
WikiGenes - Universities