A Ca2+-independent receptor for alpha-latrotoxin, CIRL, mediates effects on secretion via multiple mechanisms.
alpha-Latrotoxin (alpha-Ltx), a component of black widow spider venom, stimulates secretion from nerve terminals and from PC12 cells. In this study we examine the effects of expression of a newly cloned Ca2+-independent receptor for alpha-Ltx (CIRL) on secretion from bovine chromaffin cells. We first characterized the effect of alpha-Ltx on secretion from untransfected cells. alpha-Ltx, by binding in a Ca2+-independent manner to an endogenous receptor, causes subsequent Ca2+-dependent secretion from intact cells. The stimulation of secretion is correlated with Ca2+ influx caused by the toxin. In permeabilized cells in which the Ca2+ concentration is regulated by buffer, alpha-Ltx also enhances Ca2+-dependent secretion, indicating a direct role of the endogenous receptor in the secretory pathway. Expression of CIRL increased the sensitivity of intact and permeabilized cells to the effects of alpha-Ltx, demonstrating that this protein is functional in coupling to secretion. Importantly, in the absence of alpha-Ltx, the expression of CIRL specifically inhibited the ATP-dependent component of secretion in permeabilized cells without affecting the ATP-independent secretion. This suggests that this receptor modulates the normal function of the regulated secretory pathway and that alpha-Ltx may act by reversing the inhibitory effects of the receptor.[1]References
- A Ca2+-independent receptor for alpha-latrotoxin, CIRL, mediates effects on secretion via multiple mechanisms. Bittner, M.A., Krasnoperov, V.G., Stuenkel, E.L., Petrenko, A.G., Holz, R.W. J. Neurosci. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg