The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functions of the N- and C-terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase II.

Transcription factor IIF ( TFIIF) cooperates with RNA polymerase II (pol II) during multiple stages of the transcription cycle including preinitiation complex assembly, initiation, elongation, and possibly termination and recycling. Human TFIIF appears to be an alpha2beta2 heterotetramer of RNA polymerase II-associating protein 74- and 30-kDa subunits ( RAP74 and RAP30). From inspection of its 517-amino-acid (aa) sequence, the RAP74 subunit appears to comprise separate N- and C-terminal domains connected by a flexible loop. In this study, we present functional data that strongly support this model for RAP74 architecture and further show that the N- and C-terminal domains and the central loop of RAP74 have distinct roles during separate phases of the transcription cycle. The N-terminal domain of RAP74 (minimally aa 1 to 172) is sufficient to deliver pol II into a complex formed on the adenovirus major late promoter with the TATA-binding protein, TFIIB, and RAP30. A more complete N-terminal domain fragment (aa 1 to 217) strongly stimulates both accurate initiation and elongation by pol II. The region of RAP74 between aa 172 and 205 and a subregion between aa 170 and 178 are critical for both accurate initiation and elongation, and mutations in these regions have similar effects on initiation and elongation. Based on these observations, RAP74 appears to have similar functions in initiation and elongation. The central region and the C-terminal domain of RAP74 do not contribute strongly to single-round accurate initiation or elongation stimulation but do stimulate multiple-round transcription in an extract system.[1]


WikiGenes - Universities