The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

GTF2F2  -  general transcription factor IIF,...

Homo sapiens

Synonyms: ATP-dependent helicase GTF2F2, BTF4, General transcription factor IIF 30 kDa subunit, General transcription factor IIF subunit 2, RAP30, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of GTF2F2


High impact information on GTF2F2

  • Abortive initiation assays revealed that TATA-binding protein, transcription factors TFIIB and TFIIF, and pol II were necessary and sufficient to form functional initiation complexes on both linear and supercoiled templates [5].
  • Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor [6].
  • A complementary DNA encoding human RAP30 has been isolated, and here we report the isolation of a cDNA encoding human RAP74 [7].
  • The small subunit (RAP30) of TFIIF has been cloned and shows some amino-acid sequence homology to bacterial sigma factors [8].
  • RAP30/74 is a heteromeric general transcription initiation factor which binds to RNA polymerase II [9].

Chemical compound and disease context of GTF2F2


Biological context of GTF2F2

  • The X-ray structure of the RAP30/RAP74 interaction domains at 1.7 A resolution reveals a novel "triple barrel" dimerization fold and suggests with mutant data that interactions with the transcription apparatus are mediated not only by this tripartite beta-barrel, but also via flexible loops and alpha and beta-structures extending from it [11].
  • Here we report systematic mutagenesis of the central part of RPB5 using two-step alanine scanning libraries to pinpoint critical residues for its binding to RAP30 in the TFIIF complex and/or to HBx, and identified these residues in both mammalian cells and in an in vitro binding assay [12].
  • RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988) [13].
  • We propose that TFIIF activity is regulated by protein phosphorylation, particularly of the RAP74 subunit [14].
  • Taken together, these results demonstrate that the AR N-terminal transactivation function, AF1, has the potential to regulate transcription at both the level of initiation and elongation, and that interactions with TFIIF are important during preinitiation complex assembly/open complex formation and/or promoter escape [15].

Anatomical context of GTF2F2


Associations of GTF2F2 with chemical compounds


Physical interactions of GTF2F2

  • RAP74 binds to the N-terminal region of RAP30 between amino acids 1 and 98 [22].
  • Furthermore, in vitro the receptor bound selectively to the basal transcription factors, the TATA-binding protein and TFIIF, whereas ARNT bound preferentially to TFIIF [23].
  • TFIIB binds to an overlapping region of RAP30, localized to amino acids 1-176 (amino acids 27-152 comprise a minimal binding region) [22].
  • Functional similarity to linker histones may explain the dependence of Rap30 binding on the bent DNA environment induced by the TATA box-binding protein [2].

Regulatory relationships of GTF2F2

  • When hybrid TFIIFs were reconstituted using native or recombinant subunits, a native form of RAP74 stimulated both transcription and DBPolF complex formation activity regardless of whether native or recombinant RAP30 was used [14].
  • In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase [13].

Other interactions of GTF2F2


Analytical, diagnostic and therapeutic context of GTF2F2

  • Studies with monoaffinity-purified antibodies directed against RAP 30 demonstrated, by Western blot analysis, that RAP 30 copurifies on five columns with transcription factor IIF [27].


  1. Functions of the N- and C-terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase II. Lei, L., Ren, D., Finkelstein, A., Burton, Z.F. Mol. Cell. Biol. (1998) [Pubmed]
  2. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Groft, C.M., Uljon, S.N., Wang, R., Werner, M.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. RAP30/74: a general initiation factor that binds to RNA polymerase II. Burton, Z.F., Killeen, M., Sopta, M., Ortolan, L.G., Greenblatt, J. Mol. Cell. Biol. (1988) [Pubmed]
  4. Direct interaction between the subunit RAP30 of transcription factor IIF (TFIIF) and RNA polymerase subunit 5, which contributes to the association between TFIIF and RNA polymerase II. Wei, W., Dorjsuren, D., Lin, Y., Qin, W., Nomura, T., Hayashi, N., Murakami, S. J. Biol. Chem. (2001) [Pubmed]
  5. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Goodrich, J.A., Tjian, R. Cell (1994) [Pubmed]
  6. Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Joliot, V., Demma, M., Prywes, R. Nature (1995) [Pubmed]
  7. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Finkelstein, A., Kostrub, C.F., Li, J., Chavez, D.P., Wang, B.Q., Fang, S.M., Greenblatt, J., Burton, Z.F. Nature (1992) [Pubmed]
  8. Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF. Aso, T., Vasavada, H.A., Kawaguchi, T., Germino, F.J., Ganguly, S., Kitajima, S., Weissman, S.M., Yasukochi, Y. Nature (1992) [Pubmed]
  9. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II. Sopta, M., Burton, Z.F., Greenblatt, J. Nature (1989) [Pubmed]
  10. Isolation of three proteins that bind to mammalian RNA polymerase II. Sopta, M., Carthew, R.W., Greenblatt, J. J. Biol. Chem. (1985) [Pubmed]
  11. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. Gaiser, F., Tan, S., Richmond, T.J. J. Mol. Biol. (2000) [Pubmed]
  12. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein. Le, T.T., Zhang, S., Hayashi, N., Yasukawa, M., Delgermaa, L., Murakami, S. J. Biochem. (2005) [Pubmed]
  13. The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Killeen, M.T., Greenblatt, J.F. Mol. Cell. Biol. (1992) [Pubmed]
  14. Regulation of the human general transcription initiation factor TFIIF by phosphorylation. Kitajima, S., Chibazakura, T., Yonaha, M., Yasukochi, Y. J. Biol. Chem. (1994) [Pubmed]
  15. The role of the general transcription factor IIF in androgen receptor-dependent transcription. Choudhry, M.A., Ball, A., McEwan, I.J. Mol. Endocrinol. (2006) [Pubmed]
  16. Immunoaffinity purification of the RAP30 subunit of human transcription factor IIF. Thompson, N.E., Burgess, R.R. Protein Expr. Purif. (1999) [Pubmed]
  17. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. Tan, S., Aso, T., Conaway, R.C., Conaway, J.W. J. Biol. Chem. (1994) [Pubmed]
  18. TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation. Rawling, J.M., Alvarez-Gonzalez, R. Biochem. J. (1997) [Pubmed]
  19. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. Charlet-Berguerand, N., Feuerhahn, S., Kong, S.E., Ziserman, H., Conaway, J.W., Conaway, R., Egly, J.M. EMBO J. (2006) [Pubmed]
  20. Production of human RAP30 and RAP74 in bacterial cells. Wang, B.Q., Kostrub, C.F., Finkelstein, A., Burton, Z.F. Protein Expr. Purif. (1993) [Pubmed]
  21. Related RNA polymerase-binding regions in human RAP30/74 and Escherichia coli sigma 70. McCracken, S., Greenblatt, J. Science (1991) [Pubmed]
  22. RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. Fang, S.M., Burton, Z.F. J. Biol. Chem. (1996) [Pubmed]
  23. Trans-activation by the human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins: direct interactions with basal transcription factors. Rowlands, J.C., McEwan, I.J., Gustafsson, J.A. Mol. Pharmacol. (1996) [Pubmed]
  24. Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. Dubrovskaya, V., Lavigne, A.C., Davidson, I., Acker, J., Staub, A., Tora, L. EMBO J. (1996) [Pubmed]
  25. The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. Lavery, D.N., McEwan, I.J. Biochem. Soc. Trans. (2006) [Pubmed]
  26. Sequence of general transcription factor TFIIB and relationships to other initiation factors. Malik, S., Hisatake, K., Sumimoto, H., Horikoshi, M., Roeder, R.G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. Factors involved in specific transcription by mammalian RNA polymerase II. RNA polymerase II-associating protein 30 is an essential component of transcription factor IIF. Flores, O., Maldonado, E., Burton, Z., Greenblatt, J., Reinberg, D. J. Biol. Chem. (1988) [Pubmed]
WikiGenes - Universities