Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats.
Huntington's disease ( HD) is caused by expansion of a glutamine repeat in huntingtin. Mutant huntingtin contains 36-55 repeats in adult HD patients and >60 repeats in juvenile HD patients. An N-terminal fragment of mutant huntingtin forms aggregates in neuronal nuclei in the brains of transgenic mice and HD patients. Aggregation of expanded polyglutamine is thought to be a common pathological mechanism in HD and other glutamine repeat diseases. It is not clear how the length of the repeats is correlated with formation of protein aggregates. By expressing a series of huntingtin constructs encoding various glutamine repeats (23-150 units) in cultured cells we observed N-terminal fragments of huntingtin (amino acids 1-67 and 1-212), but not full-length huntingtins, with glutamine repeats >/=66 units formed protein aggregates. Huntingtin aggregation was not induced when the repeat was </=49 units and was markedly promoted by very long repeats >/=120 units. This study suggests that various N-terminal fragments of mutant huntingtin can form aggregates and that aggregation is prompted by lengthening the glutamine repeat.[1]References
- Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Li, S.H., Li, X.J. Hum. Mol. Genet. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg