The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, gyro ( Gy) mouse.

Gy, along with Hyp, is a dominant mutation of the normal gene Pex causing X-linked hypophosphatemia in the mouse. Hemizygous Gy male mice, however, have greater defects in survival, bodily growth, skeletal mineralization, and neurological function than those found in heterozygous Gy females or in Hyp mice. Since the gene for spermine synthase is immediately upstream of the homologous human gene PEX, we compared the effects of the Gy and Hyp mutations on both the spermine synthase gene and the Pex gene. Barely detectable levels of spermine (< 5% of normal) with elevated levels of its precursor, spermidine, were found in organs of Gy male mice compared to normal male littermates. Neither Gy females nor Hyp male mice were significantly affected. Four missing introns of the spermine synthase gene were identified in Gy male mice, suggesting extensive gene disruption. A pseudogene for spermine synthase was also identified in the mouse genome. Pex mRNA was found in several but not all tissues studied in adult normal mice. Pex mRNA was altered in both Gy and Hyp mice. All male Hyp mice were lacking the 3' end of the Pex message, whereas all male Gy mice were deficient at the 5' end. In summary, the Gy mutation is associated with a recessively expressed mutation of the spermine synthase gene, leading to spermine deficiency, and a dominantly expressed mutation of the Pex gene, leading to hypophosphatemia. Alterations in two contiguous genes in Gy may explain the additional phenotypic abnormalities present in the Gy male mouse.[1]


  1. Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, gyro (Gy) mouse. Meyer, R.A., Henley, C.M., Meyer, M.H., Morgan, P.L., McDonald, A.G., Mills, C., Price, D.K. Genomics (1998) [Pubmed]
WikiGenes - Universities