The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

spermine     N,N'-bis(3- aminopropyl)butane-1,4- diamine

Synonyms: Spermina, Spermin, gerontine, neuridine, musculamine, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of spermine


Psychiatry related information on spermine


High impact information on spermine

  • Identification of a thymic inhibitor ('chalone') of lymphocyte transformation as a spermine complex [11].
  • Endogenous polyamines such as spermine and spermidine have multiple effects in the central nervous system and have been suggested to be neurotransmitters or neuromodulators [12].
  • The dependence of NMDA receptor channel activity on tonically active CKII thus permits changes in intracellular spermine levels or phosphatase activities to effectively control channel function [13].
  • The inhibition of cytokine synthesis was specific and reversible, with significant inhibition of TNF synthesis occurring even when spermine was added after LPS [14].
  • The mechanism of spermine-mediated cytokine suppression was posttranscriptional and independent of polyamine oxidase activity [14].

Chemical compound and disease context of spermine


Biological context of spermine

  • The structure of one such cationic molecule suggested a molecular mimicry with spermine, a ubiquitous endogenous biogenic amine that increases significantly at sites of inflammation and infection [14].
  • We report here that spermine increases the rates of both association and dissociation of binding of [3H]MK-801, suggesting that it increases the accessibility of the binding site for MK-801 within the ion channel of the receptor complex [20].
  • Spermine potentiation showed fast on-off kinetics, and intracellular spermine, loaded in the recording pipette, did not occlude potentiation by extracellularly applied spermine [21].
  • Mutation of these same 2 cysteines also eliminated potentiation by spermine and shifted the IC50 for H+ inhibition and the EC50 for NMDA [22].
  • Induction of the postreceptor defect was specific for insulin under conditions when downregulation would occur, since treatment of cells with Tris and the insulin mimicker spermine did not result in receptor loss or the postreceptor defect [23].

Anatomical context of spermine

  • These results identify a distinct molecular counterregulatory role for spermine in downregulating the monocyte proinflammatory cytokine response [14].
  • NR1 subunits with an N-terminal insert (termed N1) form receptors in Xenopus oocytes with greatly reduced potentiation by spermine and Zn2+ [24].
  • Increased spermidine or spermine level is essential for hepatocyte growth factor-induced DNA synthesis in cultured rat hepatocytes [25].
  • The effects of alcohol and spermine on albumin synthesis and polysome aggregation were studied in the isolated perfused rabbit liver system [26].
  • The data indicate that intracellular physiologic polyamines, especially spermine, decrease erythrocyte membrane deformability and stabilize the membrane skeleton, making it more resistant to fragmentation [27].

Associations of spermine with other chemical compounds


Gene context of spermine


Analytical, diagnostic and therapeutic context of spermine


  1. Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. Radtke, H.W., Rege, A.B., LaMarche, M.B., Bartos, D., Bartos, F., Campbell, R.A., Fisher, J.W. J. Clin. Invest. (1981) [Pubmed]
  2. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Lambert, O., Letellier, L., Gelbart, W.M., Rigaud, J.L. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  3. Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects. Cohen, L.F., Lundgren, D.W., Farrell, P.M. Blood (1976) [Pubmed]
  4. Antiproliferative effect of spermine depletion by N-cyclohexyl-1,3-diaminopropane in human breast cancer cells. Huber, M., Poulin, R. Cancer Res. (1995) [Pubmed]
  5. Effects of novel spermine analogues on cell cycle progression and apoptosis in MALME-3M human melanoma cells. Kramer, D.L., Fogel-Petrovic, M., Diegelman, P., Cooley, J.M., Bernacki, R.J., McManis, J.S., Bergeron, R.J., Porter, C.W. Cancer Res. (1997) [Pubmed]
  6. Spermine modulation of the glutamate(NMDA) receptor is differentially responsive to conantokins in normal and Alzheimer's disease human cerebral cortex. Ragnarsson, L., Mortensen, M., Dodd, P.R., Lewis, R.J. J. Neurochem. (2002) [Pubmed]
  7. Spermine and aminoguanidine protect cells from chromosome aberrations induced by adenovirus during the G2 phase of the cell cycle. Bellett, A.J., Waldron-Stevens, L.K., Braithwaite, A.W., Cheetham, B.F. Chromosoma (1982) [Pubmed]
  8. Brain lesions and delayed water maze learning deficits after intracerebroventricular spermine. Conway, E.L. Brain Res. (1998) [Pubmed]
  9. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Vivó, M., de Vera, N., Cortés, R., Mengod, G., Camón, L., Martínez, E. Neurosci. Lett. (2001) [Pubmed]
  10. Cyclic changes of plasma spermine concentrations in women. Gilad, V.H., Halperin, R., Chen-Levy, Z., Gilad, G.M. Life Sci. (2002) [Pubmed]
  11. Identification of a thymic inhibitor ('chalone') of lymphocyte transformation as a spermine complex. Allen, J.C., Smith, C.J., Curry, M.C., Gaugas, J.M. Nature (1977) [Pubmed]
  12. Polyamine regulation of N-methyl-D-aspartate receptor channels. Rock, D.M., Macdonald, R.L. Annu. Rev. Pharmacol. Toxicol. (1995) [Pubmed]
  13. Casein kinase-II regulates NMDA channel function in hippocampal neurons. Lieberman, D.N., Mody, I. Nat. Neurosci. (1999) [Pubmed]
  14. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. Zhang, M., Caragine, T., Wang, H., Cohen, P.S., Botchkina, G., Soda, K., Bianchi, M., Ulrich, P., Cerami, A., Sherry, B., Tracey, K.J. J. Exp. Med. (1997) [Pubmed]
  15. Selective elevation of the N1-acetylspermidine level in human colorectal adenocarcinomas. Takenoshita, S., Matsuzaki, S., Nakano, G., Kimura, H., Hoshi, H., Shoda, H., Nakamura, T. Cancer Res. (1984) [Pubmed]
  16. Spermine-induced variations in the adenosine 5'-diphosphate ribosylation patterns of nuclear proteins from rat liver and hepatoma. Perrella, F.W., Lea, M.A. Cancer Res. (1979) [Pubmed]
  17. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+. Takeda, Y., Onishi, T. J. Biol. Chem. (1975) [Pubmed]
  18. Appetite suppression and weight reduction by a centrally active aminosterol. Ahima, R.S., Patel, H.R., Takahashi, N., Qi, Y., Hileman, S.M., Zasloff, M.A. Diabetes (2002) [Pubmed]
  19. Unraveling new features of clindamycin interaction with functional ribosomes and dependence of the drug potency on polyamines. Kouvela, E.C., Petropoulos, A.D., Kalpaxis, D.L. J. Biol. Chem. (2006) [Pubmed]
  20. Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor. Williams, K., Dawson, V.L., Romano, C., Dichter, M.A., Molinoff, P.B. Neuron (1990) [Pubmed]
  21. Spermine regulates N-methyl-D-aspartate receptor desensitization. Lerma, J. Neuron (1992) [Pubmed]
  22. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Sullivan, J.M., Traynelis, S.F., Chen, H.S., Escobar, W., Heinemann, S.F., Lipton, S.A. Neuron (1994) [Pubmed]
  23. Insulin receptor down-regulation is linked to an insulin-induced postreceptor defect in the glucose transport system in rat adipocytes. Garvey, W.T., Olefsky, J.M., Marshall, S. J. Clin. Invest. (1985) [Pubmed]
  24. Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Zheng, X., Zhang, L., Durand, G.M., Bennett, M.V., Zukin, R.S. Neuron (1994) [Pubmed]
  25. Increased spermidine or spermine level is essential for hepatocyte growth factor-induced DNA synthesis in cultured rat hepatocytes. Higaki, I., Matsui-Yuasa, I., Terakura, M., Kinoshita, H., Otani, S. Gastroenterology (1994) [Pubmed]
  26. Alcohol, amino acids, and albumin synthesis. II. Alcohol inhibition of albumin synthesis reversed by arginine and spermine. Oratz, M., Rothschild, M.A., Schreiber, S.S. Gastroenterology (1976) [Pubmed]
  27. Stabilization of erythrocyte membranes by polyamines. Ballas, S.K., Mohandas, N., Marton, L.J., Shohet, S.B. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  28. Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Vorobjev, V.S., Sharonova, I.N., Walsh, I.B., Haas, H.L. Neuron (1993) [Pubmed]
  29. Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Cheng, S.X., Geibel, J.P., Hebert, S.C. Gastroenterology (2004) [Pubmed]
  30. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase. Chattopadhyay, M.K., Tabor, C.W., Tabor, H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  31. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Balasundaram, D., Tabor, C.W., Tabor, H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  32. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Lorenz, B., Francis, F., Gempel, K., Böddrich, A., Josten, M., Schmahl, W., Schmidt, J., Lehrach, H., Meitinger, T., Strom, T.M. Hum. Mol. Genet. (1998) [Pubmed]
  33. Screening for modulators of spermine tolerance identifies Sky1, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis. Erez, O., Kahana, C. Mol. Cell. Biol. (2001) [Pubmed]
  34. Antibody to spermine: a natural biological constituent. Bartos, D., Bartos, F., Campbell, R.A., Grettie, D.P., Smejtek, P. Science (1980) [Pubmed]
  35. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Aizenman, C.D., Muñoz-Elías, G., Cline, H.T. Neuron (2002) [Pubmed]
  36. Spermine stimulation of CCl4 depressed protein synthesis in rabbits. Oratz, M., Rothschild, M.A., Schreiber, S.S., Lane, B.P. Gastroenterology (1980) [Pubmed]
  37. Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Porter, C.W., Bernacki, R.J., Miller, J., Bergeron, R.J. Cancer Res. (1993) [Pubmed]
WikiGenes - Universities