The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes.

Elongation factor-3 (EF-3) is an essential fungal-specific translation factor which exhibits a strong ribosome-dependent ATPase activity and has sequence homologies that may predict domains critical for its role in protein synthesis, including a domain at the N terminus, which exhibits sequence homology with Escherichia coli ribosomal protein S5. A portion of the N terminus of Saccharomyces cerevisiae EF-3 (spanning the S5 homology region) has been cloned, expressed, and purified from E. coli. UV cross-linking experiments revealed that the N-terminal EF-3 protein (N-term EF-3) can be specifically cross-linked to 18 S rRNA. Filter-binding assays confirmed these data, and also established that the interaction has a Kd approximately 238 nM. Additional evidence shows that N-term EF-3 is able to associate with yeast ribosomes and inhibit the ribosome-dependent ATPase activity of native EF-3. These data taken together suggest that at least one of the ribosome-binding sites of EF-3 is located at the N terminus.[1]

References

  1. The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes. Gontarek, R.R., Li, H., Nurse, K., Prescott, C.D. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities