The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

alpha1-adrenoceptor agonists and IGF-1, myocardial hypertrophic factors, regulate the Kv1.5 K+ channel expression differentially in cultured newborn rat ventricular cells.

Interest has arisen concerning the importance of alpha-adrenergic function and insulin-like growth factor-1 (IGF-1) in cardiac remodelling. The hypothesis that these two factors may underlie the regulation of voltage-gated K+ channel expression in hypertrophied cardiomyocytes was tested by performing Western blot analysis of the Kv1.5 K+ channel alpha-subunit in cultured newborn rat ventricular cells. Myocyte size was quantified by surface area and total cell protein concentration. Cell exposure to the alpha1-adrenoceptor agonist phenylephrine (PE, 20 microM) and IGF-1 (60 ng/ml) for 72 h both induced a significant increase of cell size indicating myocyte hypertrophy, which could be separately blocked by the protein kinase C inhibitor staurosporine (20 nM) and the tyrosine kinase inhibitor genistein (15 microM). Western blots of cell proteins prepared from myocyte cultures showed a single protein band at 75 kD recognized by the anti-Kv1.5 antibody, and demonstrated a 56% reduction in the Kv1. 5 immunoreactive protein level in the PE-treated cell preparations. This suppression was not affected by staurosporine, but was remarkably attenuated by W7 (20 microM), a selective calmodulin antagonist. In contrast to PE, a 48% enhancement of the protein expression of Kv1.5 channel was induced by IGF-1 and this stimulation was specifically blocked by genistein. Our findings suggest that the differential regulation of cardiac Kv1.5 K+ channel expression can be produced by alpha1-adrenoceptor activation and IGF-1 via distinctive signalling pathways. Calmodulin-dependent kinase and tyrosine kinase contribute importantly to the alpha1-adrenoceptor- mediated decrease and the IGF-1- mediated increase in cardiac Kv1.5 K+ channel expression, respectively.[1]

References

 
WikiGenes - Universities